Inventory of ACES' Custom Printed Circuit Boards

ACES' preference for rapid, efficient prototyping (thereby leading to increased productivity) continues to inspire the development of custom printed circuit boards (PCBs). These assets are intended for use as standalone components or either inserted perpendicular (Appliances) or parallel (Shields) into the Arduino UNO or the Dolgin Development Board (DDB) based on the ATtiny24/44/84.

Users wishing to add to our device inventory are encouraged to install one or both of our two custom EAGLE Parts Libraries: THT, SMT as many of the common components have been collected and adapted for the particular needs of ACES and the DES.

Binary Challenge. As of mid-June 2019 the V1 prototype is functioning. Power and noise inconsistencies require V2, likely ready for testing in late August. Ongoing work on the project can be followed from the development page.

V1 Functioning Case (vc3)

Matrix Equalizer Stick V3. J. Dolgin (ACES '20) replaced the Line In Jack of the Matrix Equalizer Stick (February 2018) with Adafruit's AGC Electret Microphone (Adafruit 1713) as the input device. Further changes to this 5V device, sees the existing obsolete matrix replaced with the more common pin layout compatible with the KWM-20882CUYB 0.8" (20mmx20mm) miniature matrix from Adafruit that is available in a variety of colours. ISP breakout pins have been rearragned in Version 3 for compatibility with V2 of the ACES ISP Breakout Board. The mic, together with the addition of four M3 corner holes for encasement, required a slight increase in the width. Programming of the ATtiny84 can be accomplished with the ACES' ISP breakout board V2 , together with your Sparkfun Pocket Programmer (USBTiny).

Matrix Equalizer Stick V3 (Board File) Rendered Image (JLCLabs) Assembled & Functioning Device

ISP Breakout Board V2. This ISP board is used to flash standalone AVR microcontrollers on a breadboard using your Sparkfun Pocket programmer. An edit of our original ISP Breakout Board has two improvements. The 2×3 input header has been rotated 180° so the ISP cable does not cover the board and the new sequence of signals on the 1×6 output header more closely aligns with the ISP pins of ATmega328P (SCK, MISO, and MOSI). Incidentally, the pins line up perfectly with the ATtiny84-driven Matrix Equalizer Stick V3 (above). For your own ATtiny84-driven device designs, you are strongly urged to follow this ISP breakout sequence.

Board Image Rendered (JLCLabs)

LED Segment Tester v1. An enhancement of the earlier 7-Segment Tester was developed in May 2019 to include a variety of optical display devices used within the ACES program. In addition to the common cathode 7-segment display, users can conform their bargraphs, mini matrices and both comon cathode and common anode 4-pin RGBLEDs.

LED Segment Tester (Render) Case
ICS3U Competition set for Winter 2020

Intersection Shield for the Dolgin Development Board (June 2019). This PCB adds a second entry in our ACES' inventory of shields for the Dolgin Development Board. Maximum use of the ATtiny84's 11 digital pins provides support for two 7-segment countdown displays (one for each direction: B0:B2,A6:A7) and six LEDs (three per direction: A0:A5).

Intersection Shield (EAGLE Board View) Intersection Shield Rendering

Analog to Digital Conversion Shield for the Dolgin Development Board (May 2019). The first of (hopefully) many Appliances and Shields for the Dolgin Development board is a Shield that exploits the AVR's 10-bit Analog-to-Digital Conversion peripheral. Creative use of the tiny's limited set of 10 digital pins resulted a bank of four small (0.3") 7 segment displays (ROHM: LA-301VL) driven through POV to present the AD conversion to a value from 0-1023.

ADCS V2 (EAGLE Board View) ADCS V2 Render (JLCLabs)

2019 DC Fan Project. (May 2019). At a point in the third term in the Spring of 2019 it was determined that a fitting tribute to the intense AVR Assembly software investigations of the common 4-wire DC cooling fan would be best served by creating an attractive housing for students to enjoy in their dorm rooms in the Fall. K. Fiset-Algarvio, Mr. Elia, and I secretly partnered to develop 10 units of the device that appears below, right. A custom PCB, in-house 3D printed case, and a pair of 2D custom acrylic panels were brought together to create an an attractive device that is driven the very code the students developed together over their final ACES term.

On the last day of classes Mr. Elia was presented with this unexpected device at the very moment a tour of prospective families appeared at our door od the DES, making the moment even more special. Funny how good things somtimes turn out even better than one could have imagined...

Rendering of the DC Fan PCB Assembled Unit

Dolgin Development Board. (May 2019). Every year Grade 11 ACES are tasked with imagining and creating a PCB that they think would have faciliated their own skill development had it been available. Out of each year's collection there are typically a few gems that find their way into general use within our program. J. Dolgin (ACES '20) created this small device that breaks out the pins of the AVR ATtiny24/44/84. Pin arrangement reflected compatibility with existing assets, such as the Morland Bargraph v3. The device provides on-board 5V regulation, as well as an ISP header. To complete the package, J. Dolgin designed and printed a custom case enabling side entry of a secondary power source.

Dolgin Development Board v3 (Render) J. Dolgin's Case for the Dolgin Development Board

Benson Breadboard Adapter. (April 2019). G. Benson (ACES '19) left his legacy on our program through the implementation of a device that all ACES can benefit from at the very beginning of their prototyping pursuits. A standard 2.1mm power jack accepts power and delivers it to both supply rails on the longer sides of the breadboard, eliminating the need for the hardwiring of the busses. An On/Off switch eliminates the need to disconnect the power from the breadboard while rewiring. Surface mount LED and resistor pads allow for the optional installation of the On/Off indicator. Finally, an onboard 7805 regulator with diode protection allows users to choose between voltage in (VIN) and 5V,

Benson Breadboard Adapter (EAGLE Board View) Benson Breadboard Adapter (Render)

7-Segment Display Tester. (April 2019). The precursor to the LED Segment Tester is this little number that can be used to confirm the status of a common cathode 7-segment display.

(Common Cathode) 7-Segment Display Tester (Board View) DirtyPCB Render

16×2 Character LCD Carrier. (March 2019). Since the wiring of this useful device is a less-than-desirable undertaking, O/C* coverage of Adafruit's ubiquitous 16×2 Character LCD in the Spring of 2019 necessitated the creation of an ACES Appliance. Standard pinheader and hole placement dimensions were readily available online. After a quick solder and attachment to the appliance the LCD panel should be ready for exercise with the software application developed for the demonstration.

16×2 Character LCD Carrier (EAGLE Board View) 16×2 Character LCD Carrier (DirtyPCB Rendering)
LCD Dimensions LCD ⇔ Appliance Connections

ICS2O Counting Circuit. (March 2019). As dynamic as the ACES curriculum is from year to year, the classic Grade 10 Counting Circuit is a right of passage for ACES. Over the 2019 March Break a custom PCB was designed and manufactured for those ACES that can demonstrate a working breadboard prototype in plenty of time before their DER is due. As he kindly did for the ACES Capacitor Visualizer (see below), J. Dolgin (ACES' '20) graciously designed a custom case for this PCB. The 9V battery resides in an internal well, centered within the case for balance. At 4h a print, only those ACES that successfully solder their PCBs are in line to receive a case to mount their device! Good luck.

ICS2O Counting Circuit (EAGLE Board View) ICS2O Counting Circuit (DirtyPCB Rendering)
J. Dolgin's ACES' Custom Counting Circuit Case

Joule Thief V0a. (Planned-March 2019). An tight design possibility would be to screw a Joule Thief PCB directly to a AA battery holder. Using the dimensions of the holder, a PCB was developed that just might work. We'll see...

Joule Thief V0a (EAGLE Board View) Joule Thief V0a (DirtyPCB Rendering)

Joule Thief V0. Also known as the Blocking Oscillator, this wonderful little circuit has a charming history and introduces students to the interplay between electricity and magnetism as well as the Persistence of Vision (POV) concept. It is at the heart of the ubiquitous solar garden light in that it can boost the voltage of an all but dead 1.5V AA battery to the point that it can drive the higher voltage (~3V) blue and white LEDs. Prepared for ACES use for the first time in the Spring 2019 ICS2O session, I challenge readers to explore the many variations of this fascinating circuit. This particular minimalist variation uses a pair of 100μH fixed inductors in place of a toroid ring and is described in Wikipedia article. The first ACES project to incorporate this circuit board was assigned in the 2019 Spring session of ICS2O (formerly TEL3M).

Joule Thief V0 (EAGLE Board View) Joule Thief V0 (DirtyPCB Rendering)

(Appliance) Morland Bargraph SMT V2A (SPI-compatible). SMT V1 worked as expected but but after realization that the AVR's SPI peripheral (on dedicated pins 10-13) can provide the hardware equivalent of the (relatively slower) software shiftOut function a simple, but significant, SMT V1 update was made to accommodate either transfer strategy. I've order 25, just enough for a class set of these that we'll bake in the Hodgson Reflow Oven in early March 2019.

Morland Bargraph SMT V2A (.brd view) Morland Bargraph SMT V2A (DirtyPCB Rendering)


(Appliance) UART/SoftwareSerial/SPI Communication Stick. Wired communication between two Arduinos would make for an interesting gaming experience. An appliance designed to be inserted into two UNOS, avoiding wires altogether would get the game underway faster and leave more time for the competition! This nifty little appliance supports the UNO's hardware UART on pins 0 and 1, Software Serial in pins 8 and 9 and SPI on pins 10-13. A common ground is onboard and stackable female headers allow for other devices to capitalize on the remaining unused pins. I challenge software-leaning ACES to write some games (Tic-Tac Tow, battleship, MasterMind or whatever...)

UART/Software Serial/SPI Communication Stick UART/Software Serial/SPI Comm Stick (DirtyPCB Rendering)

(Appliance) Morland Bargraph V3 (SPI-compatible). Realization that the AVR's SPI peripheral (on dedicated pins 13-10) can provide the hardware equivalence of the (slower) software shiftOut function inspired a simple but significant V1 update to accommodate either strategy. Another subtle redesign consideration was to limit the increased number of pins from 5 to 6, providing the flexibility to implement the device in any of three Arduino (ATmega328p) ports (PORTB, PORTC, or PORTD) to minimize competition for pins with other ACES appliances. Sourcing power from digital pin 12 (MISO is not required for this appliance) is not ideal, but still an esthetically-preferable solution than running a wire to the 5V pin. As 8-LED bargraphs (that match the 595's 8 outputs) are not readily available, the bargraph's two leftmost LEDs (MSBs) remain unconnected. The active 8 LEDs have been changed to right-alignment and small dots added to assist interpretation of the LEDs/bits. The symmetric scalloped corners are cosmetic. White was chosen to enable quick distinction from its V1 counterpart.

Morland Bargraph V3 (SPI) Outline Morland Bargraph V3 (SPI) DirtyPCB Rendering

(Appliance) Morland Bargraph SMT Version 1. An SMT version of the essential Morland Bargraph was designed and produced for the 2018/19 ICS4U class. The device worked as expected but a design oversight did not allow for faster hardware SPI transfers. SMT Version 2 will correct this issue to make it SPI-compatible. If you have a functional version of this device, download this code and take it for a test drive.

Morland Bargraph SMT V1 (.brd view) Morland Bargraph SMT V1 (DirtyPCB Rendering)

nRF24L01 Appliance. To prepare for the 2019 ICS3U introduction to radio frequency communication a reworking of an earlier 2017 design by O. Logush was undertaken and converted into a UNO Appliance. The board breaks out the incompatible UNO pin arrangement of the standard nRF24L01 to a wireless (pardon the pun) configuration.

Standard nRF24L01 Board ACES nRF24L01 Appliance

Photophone. One of most remarkable projects from the 2017-2018 Sr. ACES project lineup was E. McAuliffe's (MacGyver-inspired) Photophone. It is both perplexing and inspiring in its simplicity. Ethan took a break from his Engineering studies at McMaster over the holidays to whip up a convenient transmitter and receiver for current ACES to explore and enjoy. Feel free to explore more of Ethan's projects by browsing through his blog.

Development Page

Photophone Transmitter Photophone Receiver

(Appliance) ACES 1.8" TFT Appliance Backpack. In preparation for a 10th Anniversary Reunion with the 2009 Showcase Fair Project in the Spring of 2019 an appliance was designed in January 2019 to mount the 1.8" TFT Backpack from Adafruit. The 2018-2019 ICS4U class will use this device to explore the mathematics of the Mandelbrot and Julia Sets, using fixed point mathematics to accelerate the rendering. (this project may change everything...)

ACES 1.8" TFT Appliance Backpack (.brd) Dirty PCB Rendering

(Appliance) D. Raymond's RTC Clock. D. Raymond's 2018 legacy PCB was a handy little RTC and display that is used to introduce Grade 11s to the I2C communication protocol. A tweaked version in January 2019 of the PCB was converted to an Arduino appliance.

D. Raymond RTC Clock Top D. Raymond RTC Clock Working (click image for video)

Analog to Digital Converter. A utility board that could be used by Grade 10s to yield a digital display of 10-bit analog voltage conversion levels levels should prove to be quite useful.

EAGLE Board Dirty PCB Rendering

Capacitor Visualizer. A truly marvelous little circuit employing a bicolor LED is of great use in explaining in demonstrating the direction of current in a charging and discharging capacitor. The PCB was used the for first time in the fall of the Grade 10 course and a month later in the Grade 6 Science unit. J. Dolgin designed and fabricated a set of cases for the Grade 6 implementation to give the prototype highly finished appeal.

Dirty PCB Rendering of EAGLE Board File J. Dolgin's Capacitor Visualizer Case

(Appliance) H. Reed's MatrixMadeEZ. While in Grade 11, H. Reed (ACES '19) designed a PCB to make short work of coding matrix displays and animations. A year later, J. Dolgin (ACES '20) put the device to great use as a responsive display device for voice-activation, creating a nifty 3D case as well. A short Neil Young clip sealed the deal :)

H. Reed's EAGLE Schematic H. Reed's Top Render

Adapter ISP FFC V2. True surface mount devices are flashed through the use of a Flat Flex Cable (FFC) and connector. Either your Pocket AVR Programmer (Arduino IDE) or your ATMEL ICE (Atmel Studio) cables will connect to the 6-pin male ISP header on the board (right). Great care must be taken in designing your EAGLE files to ensure the 6 signals are in the correct arrangement as shown.

ACES ISP Adapter: THT to FFC (.brd view) Dirty PCB Rendering

Astable Multivibrator v3. Having finished the first batch of 100, replacement order to Dirty PCBs for 300 slightly modified units was placed in April, 2018. Terminal blocks replaced the two previous LED positions to allow for access to the square wave output.

EAGLE Board Dirty PCB Rendering

Gecko II. A 2018 upgrade of the classic 2014 model.

Gecko II Display
EAGLE Board Dirty PCBs (Rendered Image @ Order) Soldered & Functioning Device
Gecko II Motherboard
EAGLE Board Dirty PCBs (Rendered Image @ Order) Soldered & Functioning Device

(Appliance) Matrix Equalizer Stick. DirtyPCBs was called on to manufacture the boards for the Matrix Equalizer Stick PCBs (developed in January 2018) intended for use for the first time in the 2018-2019 Grade 11 course.

Matrix Equalizer (Board File) Dirty PCBs (Rendered Image @ Order) Soldered & Functioning Device

Grade 5&10. Fergus Fidget Logic Trainer. A class set of custom designed digital logic training boards intended for use by Grade 5s and 10s hit the ACES round table in the fall of 2018. It took 7 board revisions to get the board to where I wanted it to be. Nick Woollcombe invested dozens of hours soldering SMD components, assembling, and debugging over 30 units. This is a one-of-a-kind RSGC ACES labour of passion, that those who understand, can fully appreciate.

Rotary DIP Switch Encoder - Wurth Electronik




FFLTv7: EAGLE Board FFLTv7 Working Device

Grade 5 BCD Decoder. In preparation for the session with the Grade 5s in November 2017, we set out to develop a device that the students could use to associate binary input with decimal output. E. Peterson arranged to have the boards manufactured through Dirty PCBs.

BCD Decoder Board BCD Decoder Device

Breadboard Power Adapter. A revision of the his earlier DC Jack adapter by P. Bagga in February 2017 included a 1206 surface mount LED and resistor for power indication.

Schematic Board

(Appliance) J. Schaffer's Traffic Light. The result of J. Schaffer's introduction to EAGLE in February 2017 yielded this simple, but effective, traffic light circuit board.

Schematic Board

(Appliance) T. Morland's Shift Register-Bargraph v1. The result of T. Morland's introduction to EAGLE in February 2017 yielded a circuit board that can be used to develop students' facility in the use of shift registers and as a visualization device for a wide range of sensor projects.

Schematic Board

Automatic Night Light. An ACES' version of the Automatic Night Light circuit board was create in February 2017 to support both the Grade 6 and Grade 10 coursework

Schematic Board

Flex PCB. SMD Matrix. O. Logush (ACES' 18) went all in and designed, ordered, and assembled this 64 LED Matrix flex circuit board. Components were soldered using the DES' Aoyue 968A Hot Air Rework Station. Here's the Flex Matrix in action.

Board Flex PCB

Pulse Counter v1. (Dec-Jan 2016-17) Inspired by a need to count pulses from Timer1 Compare Timer Match Mode in Assembly over the 2016-17 Christmas break, I designed the board below. Two switch-selectable sources (external and on-board 555) provide digital pulses to a pair of 4026 counter/decoders. For numeric output, the LB-602MK2 dual 7-segment display block was employed.

Design Decisions. The precise dimensions (and hole placement) of the Gecko was retained, in case a front plate was desired for the device. Right angle pin headers in the external source will allow the board to stand upright on a breadboard.

Schematic Board

Breadboard ATtiny85 ISP. To alleviate the hassle of wiring our earlier ISP breakout board, this device is conveniently-placed over top of the ATtiny85. P. Bagga suggested the use of female stackable header pins to make prototyping even faster. Good call, unfortunately, 4-pin stackable headers were hard to find but, in the end, a slow boat from Taiwan delivered 200 units :)

Schematic Board

Scrolling Message Board. Every self-respecting DES has a scrolling message board. O. Logush (RSGC '18) agreed to take on the project as a Grade 10 exercise. Three attempts were required to get the module board working the way we liked it (the first two batches are serving their coaster duties well). After a few months in service, the display started developing glitches. Our belief is a build up of charge/EMF so we swapped the MAX7219s for MAX7221s to try to alleviate the problem. We'll see...

Schematic Board

In-System Programmer Breakout Board. This board is used to flash standalone AVR microcontrollers on a breadboard using our Sparkfun Pocket programmer.

Schematic Board

Breadboard Power Adapter. Designed by P. Bagga over the Christmas Break 2016/17, these little babies have become quite handy in the DES!

Schematic Board

Astable Multivibrator. G. Trusler (RSGC '15) made up a custom batch of these cute little guys for the Fall '14 TEL3Mers. For the Hallowe'en tradition to continue inventory had to be replenished.

Schematic Board

2015 Anniversary Clock

Gecko (Spring 2015). As a legacy project, the 2014-2015 Grade 11 TEI3Mers created this wildly successful clock/calendar. R. Saunders (RSGC '15) did most of the in work whipping the board into shape. Follow the link to learn more about this amazing little device.

Schematic Board


*O/C = One Class