The Binomial Theorem

Given n, r € W, and the following definition from Combinatorial mathematics,

ny n!

wheren! =nx(n—1)x (n—2) x ... x3 x 2 x 1, we can state the Binomial Theorem as,
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Application: Probability

A Binomial Experiment is one in which we define two outcomes - one deemed a success which denote by the
letter, p, and the other a failure, denoted by g. Tossing a coin is an obvious example. Since each outcome, a head or
a tail is equally likely, or will 50% of the time, we make the assignments, p = g = % If we perform the experiment
n times, the Binomial Theorem can supply us with a complete probability distribution. Consider a coin tossed three
times. Here is the probability distribution,

(p+9)° =p’+3p°q+3pg* +¢°
11\’ 1’ 5(! 27 N AR
2%3 2) P\2) \3) P \3)\3) T3

1
“§*3tsTs

©1988-2003. Chris D’ Arcy g |


mailto:darcy@interlog.com

