
The Binomial Theorem
Given n, r ∈ W , and the following definition from Combinatorial mathematics,
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where n! = n × (n − 1) × (n − 2) × . . . × 3 × 2 × 1, we can state the Binomial Theorem as,
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Application: Probability

A Binomial Experiment is one in which we define two outcomes - one deemed a success which denote by the
letter, p, and the other a failure, denoted by q. Tossing a coin is an obvious example. Since each outcome, a head or
a tail is equally likely, or will 50% of the time, we make the assignments, p = q = 1

2 . If we perform the experiment
n times, the Binomial Theorem can supply us with a complete probability distribution. Consider a coin tossed three
times. Here is the probability distribution,
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