Royal St. George’s College

 Computer and Information Science
ICS4M Final Examination

Instructor: C. D’Arcy
Date: Wednesday June 6, 2007 (12:30 p.m.)
/30
Duration: 2h+; Length: 2 pages

INSTRUCTIONS TO STUDENTS

· This exam contributes 30% towards your final mark in this course.

· Appropriate coding style and documentation are expected.

· Attach your entire Calculus Project to an email to handin under the Subject Line: The End at the end of the exam.

· Do not access the internet during the exam except to consult with Sun’s Java Documentation, if necessary.
Each student will complete Question #1 OR Question #2
Question 1. Simplify and Presentation

Users submit their functions to your Calculus project using calculator-type text, such as 3x^2-4x+1, or 2sin(3x) for example, after which your parser and differentiation utilities take over. However, apart from the definition of f, your project does not currently have calculator-type text string representations for
[image: image1.wmf])

(

x

f

¢

or
[image: image2.wmf])

(

x

f

¢

¢

. That’s about to change…
15
a)
Develop the recursive Function method, private ENode simplify(ENode ref) that is called from the Function constructor immediately after the supplied function is parsed (negligible advantage but perform it anyway), and each of the two derivatives have been evaluated. The purpose of this method along with its helper methods is to simplify as many of the unnecessary subtree structures typically generated as a result of the differentiation operation. Below is an example. Consider the derivative tree arising from the differentiation of
[image: image3.wmf]x

x

f

3

)

(

=

. It can (and should) be simplified prior to evaluating the second derivative. Think of, and implement, as many situations as you can: adding and subtracting 0, multiplying and dividing by 1, any base to an exponent of 0 or 1, any arithmetic operation involving two constants, a builtin function whose expression is a constant, etc. and document the ones your code can handle.
[image: image4.png]@P};H

15
b)
Develop the Function method, public String presentation(int which) that can be called from clients of your Function class to obtain the most accurate calculator-type text string for the first and second derivatives (which=1 or which=2, respectively). If which is 0, simply return the original string provided to the Function constructor, by the client. For example, if the client provided,
[image: image5.wmf]1

4

2

^

3

)

(

+

-

=

x

x

x

f

, call to your presentation method should return
[image: image6.wmf]4

6

)

(

-

=

¢

x

x

f

 and
[image: image7.wmf]6

)

(

=

¢

¢

x

f

, for which =1 and which=2 respectively.
Question 2. Maclaurin Polynomials
30
Over the last two years, we’ve touched on the series definitions of a few of the transcendental functions like
[image: image8.wmf]x

sin

,
[image: image9.wmf]x

cos

 and
[image: image10.wmf]x

e

. In this question, you will use your Function class to generate the following two,
[image: image11.png]A2y

@n+D)

+

[image: image12.png]

Next year, you’ll take a close look at the connection between Power Series and polynomials. A Maclaurin polynomial attempts to approximate the behaviour of a function
[image: image13.wmf])

(

x

f

around the origin. Specifically, the n’th Maclaurin polynomial for a function,
[image: image14.wmf])

(

x

f

, is defined as,

[image: image15.wmf]n

n

n

x

n

f

x

f

x

f

x

f

f

x

P

!

)

0

(

!

3

)

0

(

!

2

)

0

(

)

0

(

)

0

(

)

(

)

(

3

2

+

+

¢

¢

¢

+

¢

¢

+

¢

+

=

K

For a polynomial to mimic the dynamic behaviour of another function, its successive derivatives must yield the same value for as wide an interval around 0 as possible. As you can readily determine, for
[image: image16.wmf])

0

(

)

0

(

,

0

f

P

n

=

=

. For
[image: image17.wmf])

0

(

)

0

(

,

1

f

P

n

¢

=

¢

=

, and for
[image: image18.wmf])

0

(

)

0

(

,

2

f

P

n

¢

¢

=

¢

¢

=

, and so on. The higher the degree of the approximating polynomial, Pn, the better! We can stop at 10, because not far beyond that, at 13!, we experience integer overflow. The following sequence of graphics, attempts to depict the development of the Maclaurin polynomial approximation to
[image: image19.wmf]x

sin

 for increasing n.
[image: image20.png]

	
[image: image21.wmf]x

x

»

sin

	
[image: image22.wmf]!

3

sin

3

x

x

x

-

»

	
[image: image23.wmf]!

5

!

3

sin

5

3

x

x

x

x

+

-

»

Task. Add a second constructor to your Function class with the signature,

public Function (String f, int n)

that accepts a function, f, such as
[image: image24.wmf]x

sin

 or
[image: image25.wmf]x

cos

 and a number of terms, n, between 2 and 10, and uses your derivative utility to immediately define the function that is the n’th Maclaurin polynomial of f.

Develop the MacLaurin polynomial approximation to
[image: image26.wmf]x

sin

 using driver code similar to the following.

 String[] macLaurin = { "sin(x)", "cos(x)", "e^x"};

 for (int i = 0; i < macLaurin.length; i++) {

 f = new Function(macLaurin[i], 13);

 System.out.println("x\tBuiltin\t\t\tMacLaurin Polynomial Approximation");

 for (double domain = 0.0; domain < 1.0; domain += 0.1) {

 System.out.print(df.format(domain));

 switch (i) {

 case 0:

 System.out.print("\t" + Math.sin(domain));

 break;

 }

 System.out.println("\t" + f.f(0, domain));

 }

 }
Extend your efforts to include Maclaurin approximations for
[image: image27.wmf]x

cos

 and
[image: image28.wmf]x

e

as time permits. The output should look similar to,
Question 2: MacLaurin Polynomials

sin(x)˜x-x^3/6+x^5/120-x^7/5040+x^9/362880-x^11/39916800+x^13/1932053504

x Builtin MacLaurin Polynomial Approximation

0 0.0 0.0

0.1 0.09983341664682815 0.09983341664682817

0.2 0.19866933079506122 0.19866933079506124

0.3 0.2955202066613396 0.29552020666133966

0.4 0.3894183423086505 0.3894183423086529

0.5 0.479425538604203 0.4794255386042466

0.6 0.5646424733950354 0.564642473395502

0.7 0.644217687237691 0.6442176872411535

0.8 0.7173560908995227 0.7173560909191754

0.9 0.7833269096274833 0.7833269097183834

1 0.8414709848078964 0.8414709851656519

cos(x)˜1.0-x^2/2+x^4/24-x^6/720+x^8/40320-x^10/3628800+x^12/479001600

x Builtin MacLaurin Polynomial Approximation

0 1.0 1.0

0.1 0.9950041652780258 0.9950041652780258

0.2 0.9800665778412416 0.9800665778412416

0.3 0.955336489125606 0.955336489125606

0.4 0.9210609940028851 0.921060994002885

0.5 0.8775825618903728 0.8775825618903734

0.6 0.8253356149096783 0.8253356149096873

0.7 0.7648421872844885 0.7648421872845661

0.8 0.6967067093471655 0.6967067093476687

0.9 0.6216099682706645 0.6216099682732799

1 0.5403023058681398 0.5403023058795628

e^x˜1.0+x+x^2/2+x^3/6+x^4/24+x^5/120+x^6/720+x^7/5040+x^8/40320+x^9/362880+x^10/

3628800+x^11/39916800+x^12/479001600+x^13/1932053504

x Builtin MacLaurin Polynomial Approximation

0 1.0 1.0

0.1 1.1051709180756477 1.1051709180756473

0.2 1.2214027581601699 1.2214027581601696

0.3 1.3498588075760032 1.349858807576003

0.4 1.4918246976412703 1.4918246976412726

0.5 1.6487212707001282 1.6487212707001708

0.6 1.8221188003905089 1.8221188003909659

0.7 2.0137527074704766 2.013752707473854

0.8 2.2255409284924674 2.2255409285115606

0.9 2.4596031111569494 2.4596031112449017

1 2.718281828459045 2.718281828803753

Press any key to continue...

- 1 -

_1242819154.unknown

_1242821041.unknown

_1242821218.unknown

_1242821522.unknown

_1242821560.unknown

_1242821670.unknown

_1242821490.unknown

_1242821164.unknown

_1242819357.unknown

_1242742446.unknown

_1242743310.unknown

_1242818711.unknown

_1242818753.unknown

_1242742535.unknown

_1242742499.unknown

_1242740224.unknown

_1242741007.unknown

_1242740192.unknown

