Royal St. George’s College

 Computer and Information Science
ICS3M Final Examination

Instructor: C. D’Arcy
Date: Thursday May 31, 2007 (8:30 a.m.)
/30
Duration: 2h+; Length: 2 pages

INSTRUCTIONS TO STUDENTS.

· This exam counts for 30% of your final mark in this course.

· Appropriate coding style and documentation are expected.

· It is imperative that you name your files exactly as requested. Attach all (and only) the requested files to your email to handin at the end of the exam.

· You are allowed access to your ICS3M folder.

· You are NOT allowed to access the internet at any time during the exam.
You are to develop a solution to both Question 1 and Question 2.
Question 1. Marine Biology Case Study: ICSFish
[image: image1.png]@

In this question you are to create a new class of fish, the ICSFish. The ICSFish never breeds or dies but moves according to the following rules,

· If the location in front is occupied, but the location two in front is not, it moves there, otherwise it simply reverses its direction

· Alternatively, if the location in front is not occupied, it will move there.
Of the fish classes supplied with the MBCS code, the ICSFish is most similar to the DarterFish.
Another interesting feature of the ICSFish, is that it looks different. Read the documentation found within the main method of the MBSGUI class to ensure your ICSFish look like this, [image: image4.jpg]

. You can view an animation at,

http://srschool.rsgc.on.ca/cdarcy/ICS3M/media/ICSfish.html
Task. Develop the ICSFish class that behaves as defined above. ICSFish are constructed with random colours. Modify the MBSGUI class to guarantee your ICSFish objects look like the image above. Create a ManyICSFish.dat data file that starts out with ICSFish in exactly the same locations as depicted in the screen capture above. Create a second data file, NormalDarterICSFish.dat that contains an additional interesting initial configuration of Fish, DarterFish, and ICSFish in the same environment. Modify the MBSGUI to ensure Fish objects are associated with the RoundFishDisplay() and DarterFish are associated with the LittleFishDisplay().
Submission. Attach MBSGUI.java, ICSFish.java, ManyICSFish.dat and NormalDarterICSFish.dat files to an email to handin with the Subject Line: ICSFish by the end of the exam.

Question 2. Mandelbrot Orbits.
[image: image3.jpg]

When you were introduced to the underlying orbits of the Mandelbrot Set, I demonstrated the concept using IMAGE-Calculus. When the mouse moved, the screen coordinates of the tip of the mouse cursor were converted to their corresponding real and imaginary components and the first fifteen iterations of the feedback formula,
[image: image2.wmf]c

z

z

+

¬

2

, were determined and drawn with connected lines. You are to duplicate this animation in this question. You can view a sample animation at,
http://srschool.rsgc.on.ca/cdarcy/ICS3M/media/Orbits.html
Here’s how it’s done. Your Platform already contains a successful implementation of the MouseListener interface. Since the Java language supports multiple implementations, your Content class will also implement the MouseMotionListener interface. In addition to including a statement similar to addMouseListenener(this); so that the Operating System will notify your Content class of any Mouse Motion events, as you can see from the documentation for this interface, there are two methods that need to be supported: MouseDragged and MouseMoved. The former can be left with an empty body, whereas the latter is where all action will be controlled.
The MouseMoved method should start with a call to the getGraphics() method your Content class inherited from JPanel. This will return a reference to the Graphics2D object, call it g2, that you will use to set the XOR drawing mode through the method, setXORMode(Color.white) and, later, for your drawLine() drawing method.
Add the method, public ArrayList<Point> getOrbit(int col, int row) to your Mandelbrot class that accepts the (col, row) screen coordinates of the mouse tip. This method will convert these coordinates to the corresponding c value and then determine and return an ArrayList<Point> of the first 15 iterations of the feedback formula.

Call getOrbit() from your MouseMoved method and then draw the 14 lines segments that connect the (col, row) values contained within each Point.
Note. As you can see from the animation, after each line is drawn and the mouse moves, the line disappears! The key to this magic is the statement discussed earlier, setXORMode(Color.white);. In this mode, if your program draws a set of connecting lines twice, the second drawing erases the first! So before you draw a new set of connecting lines, draw the original ones again and they’ll vanish!
Submission. Attach your Platform.java, Mandelbrot.java, Fractal.java, and ComplexNumber.java class files to an email to handin with the Subject Line: Orbits by the end of the exam.

- 1 -

_1241450072.unknown

