Royal St. George’s College

 Computer and Information Science
ICS3M Final Examination

Instructor: C. D’Arcy
Date: Monday May 29, 2006 (1 p.m.)
/30
Duration: 2h; Length: 2 pages

INSTRUCTIONS TO STUDENTS.

· This exam counts for 30% of your final mark in this course.

· Appropriate coding style and documentation are expected.

· It is imperative that you name your files exactly as requested. Attach all (and only) the requested files to your email to handin at the end of the exam.

· You are allowed access to your ICS3M folder.

· You are NOT allowed to access the internet at any time during the exam.
You are to develop a solution to Question 1 or Question 2.
1. Robots
Create a project called FinalExam and drop in the driver file below that you’ll find in our ICS3M conference. Your task is to design and implement a scaled-down, text-based visual simulation of the Becker’s Robot Environment we looked at in Grade 10.
	[image: image1.jpg]

	[image: image2.jpg]Finalexam.java | ity java | Robot.java | Thing java | Walljava | Directions.java | 4 b x;

1 public class FinalExan {
2

30 public static void main(Stringl] args) {

1 City city - new City(8. 8):
5 Robot rob = new Robot(City, 0. 3. Directions EAST, 0):
6 Wall wall = new Wall(city. 3. 3))
o Thing thingl = nev Thing(city. §. 3):
8 Thing thing? = nev Thing(city. & 3)
5
10 Systen.out println(Directions EAST):
11
12 while (rob.countThingsInBackpack() < 2) {
13
11 city show():
i
16 while (rob isBesideThing()) {
17 rob pickThing():
18 b
13
20 if (rob. frontIsClear()) {
21 rob nove()
22 3 else {
23 rob junp() :
¥

Although the City can be modeled in any number of ways, a character matrix with the cells representing the intersections would be the logical choice. The Robot’s task is to move in the same direction he is facing, from intersection to intersection until it picks up two Things. This simulation is then over. The state of the simulation should be displayed on the console window in response to a call to the show() method of the City class. When these Robots detect a Wall in the next intersection, they simply jump over them and appear in the next intersection on the next Step.

Attach all necessary files to compile and run your project to handin with the Subject Line: Final Exam.

2. Julia Sets

You will recall that the Mandelbrot Set consists of the set of points, c, in the Argand (Complex) Plane, whose orbits under the iterative formula, z ← z2+c never reach a magnitude greater than 2.0, where z starts at 0+0i. The algorithm for Julia Sets is very similar in that the orbits are also considered under the iterative formula, z ← z2+c, however c remains fixed over the entire map while,

-2.0 <= Re(z) <= 2.0 and -2.0 <= Im(z) <= 2.0

With Julia Sets it is sufficient to keep the maximum number of iterations reasonable (anywhere from 64 to 256 is plenty). Assigning a colour to a point is similar to the Mandelbrot algorithm. If z does not reach a magnitude of 2 within the allotted number of iterations, colour the point Black, otherwise use the number of iterations to index your palette.

Task. You are to adapt your Mandelbrot project to produce a sequence of 100 jpg frames displaying the sequence of Julia Set images with c ranging from (0.0,0.0) to your specially chosen target below.

[image: image3.png]13,1656)

Briggs: c=(0.769,1026)

Bowlby: c=(1.164,71)

burkis: ¢=(0.43,0.019)
¥ purkis: c=(043.0019)

. W%uzsz,os
Fowler: c=(-1.67,-0.768)

Note. To make it easy for me to mount your video, please name your frames with your last name. For example, Matt should name his images, chan_0.jpg, chan_1.jpg, and so on. Go to the URL,
http://srschool.rsgc.on.ca/cdarcy/ICS3M/Exams/ICS3M06Julia.html
to view two sample videos. Attach all images and all the necessary files for me to recompile and run your application. Documenting the c value for the respective frames allows you to revisit specific coordinates of interest for still images at a later date. To do so, add Java statements similar to,

g.setColor(Color.WHITE);

cString = "c["+zoomLevel+"]=("+df.format(reC)+", "+df.format(imC)+")";

g.drawString(cString,5,HEIGHT-5);

where df is an object declared once as,
java.text.DecimalFormat df = new java.text.DecimalFormat("##.###");

Sample Julia images appear below.
	[image: image4.png]

Figure 1. c = 0.38-0.35i; ITERATIONS: 127

	[image: image5.png]

Figure 2. c = -0.123+0.745i; ITERATIONS: 127

	[image: image6.png]

Figure 3. c = -0.6672+0.459i; ITERATIONS: 31
	[image: image7.png]

Figure 4. c = -0.765+0.003i; ITERATIONS: 31

- 3 -

