

Engineering Report

[image:]

	Course:	Engineering
	Code:	Mr. C. D’Arcy
	Author:	Jiashi Zhu
	Date:	June 8, 2012

Table of Contents

Activity 1. Build a Gamer PC	6
Purpose	6
Parts	6
Media	6
Activity 2. LED Patterns	8
Purpose	8
Media	8
Procedure	8
Parts	9
Code	10
Activity 3. Intersection Simulator 1.	12
Purpose	12
(Part 1)	12
Media	12
Parts	13
Code	13
(Part 2)	15
Media	15
Procedure	16
Parts	16
Activity 4. Intersection Simulator 2	17
Purpose	17
(Part 1)	17
Media	17
Procedure	17
Parts	18
Layout	19
Code:	19
(Part 2)	22
Media	22
Procedure	23
Activity 5. Problems 1.14~1.18	24
1.14	24
1.15	24
1.16	25
1.17	26
1.18	26
Activity 6. Altoids Speaker Project	28
Purpose	28
Parts of Circuit Board	28
BreadBoard-Prototype	29
Final Assembly	30
Activity 7. Altoids USB Charger Project	33
Purpose	33
Media	33
Parts	34
Procedure	34
2011 Exam: Conway’s Game of Life	36
Purpose:	36
Media	36
Parts	37
Procedure	37
TEI4M. Arduino	39
Project 1. A BiColor LED Flasher	39
Purpose	39
Reference	39
Method	39
Sketch	40
Media	41
Project 2. High Brightness Luxeon LED	42
Purpose	42
Reference	42
Method	42
Sketch	43
Media	44
Project 3. S.A.D. Light	45
Purpose	45
Reference	45
Parts List	45
Procedure	46
Sketch	48
Media	49
Project 4: Alphanumeric (16-Segment) Display	50
Purpose	50
Reference	50
Pin/Segment Map	50
Sketch	51
Media	53
Custom Sketch	53
Appendix C. Monthly Projects	55
October 2011: XBee Wireless Solution	55
Reference	55
Purpose	55
Parts List	55
Description	55
Summary	56
Project 5. Thermal Management	57
Part 1. NTC Thermistor	57
Reference	57
Purpose	57
Principle	57
Parts List	57
Media	58
Part 2. Serial Communications Using Processing	59
Reference	59
Purpose	59
Parts List	59
Procedure	59
Media	60
Sketch	60
Part 3. Precision Centigrade Sensor (LM35DZ)	63
Reference	63
Purpose	63
Procedure	63
Parts List	64
Sketch	64
Media	67
Part 4. Multiple Sensors: Polling	68
Reference	68
Purpose	68
Procedure	68
Parts List	68
Sketch	68
Media	73
Part 5. Multiple Sensors: Multiplexing	74
Purpose	74
Procedure	74
Sketch	74
Media	76
5V/12V Breadboard-Compatible Regulator	77
Reference	77
Purpose	77
Parts List	77
Procedure	77
Media	79
Part 6: Air Flow Management	80
Reference	80
Purpose	80
Parts List	80
Procedure	80
Sketch	81
Media	82
Part 7. Fan Speed	83
Reference	83
Purpose	83
Parts List	83
Procedure	83
Sketch	84
Media	85
Part 8. ATtiny85 Port	87
Reference	87
Purpose	87
Parts List	87
Procedure	87
Sketches	88
Media	89
Project 6. The Tune Player	91
Reference	91
Purpose	91
Parts List	91
Procedure	91
Sketches	92
Media	94
2012 Final Exam: Servo-Controlled Laser	97
Reference	97
Purpose	97
Parts List	97
Procedure	97
Sketches	98
Media	100

2010-2011 TEI3M: Computer Engineering
[bookmark: _Toc326922830]Activity 1. Build a Gamer PC
[bookmark: _Toc326922831]Purpose
The purpose of this activity was to build a personal computer that specializes in graphic and gaming performance.
[bookmark: _Toc326922832] Parts
	COMPONENT
	 DETAILS

	CPU
	Intel Core i5 650 Processor BX80616I5650 - 3.20GHz, LGA 1156, 4MB L3 Cache

	Motherboard
	ASUS P7P55D-E LX Motherboard - Intel P55, Socket LGA1156, USB, DDR3, PCIe, LAN

	RAM
	Corsair PC12800 RAM - 4GB, DDR3, 1600MHz

	Graphics card
	EVGA 01G-P3-1452-TR GeForce GTS 450 SuperClocked Video Card

	Hard Drive
	Western Digital WD1002FAEX Caviar Black Hard Drive - 1TB, 7200RPM, 64MB, SATA 6Gbs

	Power supply
	Corsair TX650W Power Supply

	DVD Writer
	LG Super Multi DVD Rewiter

	Case
	 Cooler Master HAF 922M

	Mouse
	 Microsoft Mouse

	Keyboard
	 Microsoft Keyboard

	Speakers
	 Logitech X540

	O/S
	Microsoft Windows 7 Professional 64BIT OS

	Warranty
	1 yr

[bookmark: _Toc326922833]Media
Overview:
[image: :::Pictures:iPhoto Library:Originals:2010:2010-10-1:IMG_0054.JPG][image: :::Pictures:iPhoto Library:Originals:2010:2010-10-1:IMG_0056.JPG]
The following graph shows a detailed look of the motherboard and the components installed on it.
[image:]
 (
ASUS
Motherboard
GeForce GTS 450
Graphic Card
Core I5
CPU
(
with the CPU fan)
4GB DDR3 RAM x2
)Procedure
1. Preparation:
a. Get to know basic knowledge about building a personal computer and each required component.
b. Search information and computer components retailers and parts. Considering price, efficiency and performance, provide several doable combinations. (link here)
c. Decide the final configuration. Purchase parts from retailer store.
2. Build up
a. Motherboard: Place the motherboard into the case and fixate properly with screws.
b. RAM & graphic card: Place into the grooves on the motherboard.
c. CPU: remove the protector on the motherboard, place the CPU gently onto the motherboard, close the protector, place the CPU fan over the protector and fixate.
d. Hard drive, DVD burner & Power supply installation.
e. Wire connection and arrangement: Following the instruction menu comes with the motherboard, connect wires of power supply, fans and hard drives to the motherboard. Clean up wires and place them backwards of the case to save more space and reduce heating problems.
f. Sticker placement etc.
3. Operating system installation, performance testing.
[bookmark: _Toc326922834]
Activity 2. LED Patterns
[bookmark: _Toc326922835]Purpose
The purpose of this LED Pattern project is to program the AVR-tiny24 chip so that it can turn the 8 LED lights on the board on and off in certain patterns.
(Sample videos at here, LED1~LED6)

[bookmark: _Toc326922836]Media

[image: :::Desktop:Screen shot 2010-10-16 at 下午10.38.13.png]

The above picture shows the last second of pattern 1, when the value of output is 0x00, which means all the lights will be turned on.

[bookmark: _Toc326922837]Procedure
The programming work is based on the AVR studio. [image: http://www.avrfreaks.net/modules/photoshare/images/tmb_1_900]
The following program on next page uses regisiter 16 and 17 for data storage, and regisiter 20~22 for delay method.
The program is designed to set all 8 ports of Port A on the chip for output use. For each pattern, different numbers in 16 hex is applied to Port A and change in certain orders so that those lights on the board displays the same. There is a one second delay between each two patterns.
(For the lights, 1 in binary means off and 0 means on.)

Pattern 1: the default value of Port A is set to 0xFF(11111111, all off), and decrease by 1 until the value reaches 0x00(all on).

Pattern 2: the default value is set to 0x55(01010101), and then the exchange of 1 and 0 is processed.

Pattern 3: the default value is set to 0xFE(1111110), then rotates the number to left by 1 each time.

Pattern 4: the opposite of Pattern 3, default value is 0xFF(11111111), then rotates the number to right by 1 each time.

Pattern 5: alike to Pattern 3, but instead default value is set to 0xFC(11111100)

Pattern 6: alike to Pattern 2, but instead default value is set to 0xF0(11110000).

[bookmark: _Toc326922838]Parts

1. ATtiny24
2. STK500
[bookmark: _Toc326922839]
Code
;Purpose: This project is used to demonstrate 6 specific patterns.
;Authors: Reuben Sagman & Jiashi Zhu
;Date: 10.13.2010
;===
.include "tn24def.inc"
;===
.def temp	= R16
.def data	= R17
.def count	= R18
.org 		0x00
rjmp	Reset
Reset:							;Reset
	ldi 	data,0xFF				;set data to 11111111
	out	DDRA,data				;apply all the PORTA for output
Pat1:							;pattern 1 starts from here
	out 	PORTA,data				;ouput 11111111
	rcall 	Delay004s				;delay for 0.4 s
	dec	data					;decrease data by 1
	brne	Pat1					;run Pattern1 again until data=0
	rcall	delay1s					;delay for 1 s
Pat2:							;pattern 2 starts from here
	ldi	count,10					;set count to 10
	ldi	data,0x55				;set data to 01010101
Loop:
	out	PORTA,data				;output 01010101
	com	data					;complements data(10101010)
	rcall	Delay06s					;delay for 0.6 s
	dec	count					;decrease count by 1
	brne	Loop					;run Pattern2 until count=0
	rcall	Delay1s					;delay for 1s
Pat3:							;Pattern 3 starts from here
	ldi 	data,0xFE				;set data to 11111110
	ldi	count,44					;set count to 44
Loop1:
	out	PORTA,data				;output data
	rol	data					;rotate data to left by 1
	rcall	Delay02s					;delay for 0.2s
	dec	count					;decrease count by 1
	brne	Loop1					;run Pattern3 until count=0
	rcall	Delay1s					;delay for 1s
Pat4:							;Pattern 4 starts from here
	ser 	data					;set data to 11111111
	ldi	count,45					;set count to 45
Loop2:
	out	PORTA,data				;output data
	ror	data					;rotate data to right by 1
	rcall	Delay02s					;delay for 0.2s
	dec	count					;decrease count by 1
	brne	Loop2					;run Pattern4 until count=0
 	rcall	Delay1s					;delay for 1s
Pat5:							;Pattern 5 starts from here
	sec						;set C to 1
	ldi 	data,0xFC				;set data to 11111100
	ldi	count,43					;set count to 43
Loop3:
	out	PORTA,data				;output data
	rol	data					;rotate data to left by 1
	rcall	Delay02s					;delay for 0.2s
	dec	count					;decrease count by 1
	brne	Loop3					;run Pattern5 until count=0
	rcall	Delay1s					;delay for 1s	
Pat6:							;Pattern 6 starts from here.
	ldi	count,10					;set count to 10
	ldi	data,0xF0				;set data to 11110000
Loop4:
	out	PORTA,data				;output data
	com	data					;complements data
	rcall	Delay06s					;delay for 0.6s
	dec	count					;decrease count by 1
	brne	Loop4					;run Pattern6 until count=0
	rcall	Delay1s					;delay for 1s
	rcall	Reset					; jump back to Reset
;------- D E L A Y R O U T I N E --------------------------
Delay004s:
; =============================
; delay loop generator
; 40000 cycles:
; -----------------------------
; delaying 39999 cycles:
 ldi R20, $43
WGLOOP0: ldi R21, $C6
WGLOOP1: dec R21
 brne WGLOOP1
 dec R20
 brne WGLOOP0
; -----------------------------
; delaying 1 cycle:
 nop
; =============================
	ret
Delay02s:
	rcall Delay004s		
	rcall Delay004s
	rcall Delay004s
	rcall Delay004s
	rcall Delay004s
;=====================================
ret
Delay06s:
	rcall Delay02s
	rcall Delay02s
	rcall Delay02s
;=====================================
ret
Delay1s:
	rcall Delay02s		
	rcall Delay02s
	rcall Delay02s
	rcall Delay02s
	rcall Delay02s
;=====================================
ret
Delay3s:
	rcall Delay1s
	rcall Delay1s
	rcall Delay1s
;======================================
ret
[bookmark: _Toc326922840]
Activity 3. Intersection Simulator 1.
[bookmark: _Toc326922841]Purpose	
	The purpose of this project is to build a 12-LED device that simulates the situation of an intersection. Four groups of three LED lights (green+red+yellow) are used to display the patterns of traffic lights at an intersection.
[bookmark: _Toc326922842](Part 1)
	State
	R1
	A1
	G1
	R2
	A2
	G2
	Duration (s)

	1
	0
	1
	1
	1
	1
	0
	5

	2
	0
	1
	1
	1
	0
	1
	2

	3
	0
	1
	1
	0
	1
	1
	1

	4
	1
	1
	0
	0
	1
	1
	5

	5
	1
	0
	1
	0
	1
	1
	2

	6
	0
	1
	1
	0
	1
	1
	1

	Return to Pattern 1 and so on...

[bookmark: _Toc326922843] (
Power
line
 _
Lines that transfer the data in PORTA to the LEDs
These LEDs are used to replace the lights on the board
)[image:]Media

Procedure
The 12 LEDs should be turned on and off in the following patterns. (Only 6 are shown below for all the LEDs are divided into 2 groups.)
1. A look up table (LUT) is set up to store the data that used to control LEDs. In each row of the table, the low value shows the on/off status of the LEDs, and the higher value is set to decide how long each pattern should be displayed.
2. Because technically only 6 of the LEDs are needed to be modified, the last 2 bits of PORTA are settled off.
3. The value Z is programmed as a pointer to read data from the LUT. When it’s pointed at a low value, the system will pass the value to PORTA; when it’s pointed at a high value, the system will jump to the Hold label and call Delay1s certain times according to the high value.
4. When value Z is detected to reach the end of the LUT, the system will reset its position back to the beginning of the LUT and process the previous steps again.
[bookmark: _Toc326922844]Parts
1. ATtiny24.
2. STK500
3. Green, yellow, and red LEDs, 4 for each colour.
4. Power line, several wires
5. Optional: resistors (depends on how the LEDs are arranged.)
[bookmark: _Toc326922845]Code
;---
; PROJECT:	Lookup Table Template (LUT)
; PURPOSE:	To provide a (somewhat) standard framework for
;		implementing all-important lookup tables
; AUTHOR:	Reuben Sagman and Jiashi Zhu	
; DATE:		10 10 29
;---
.include	"tn24def.inc"
;---
;---- D E F I N E S ------------------------------------
.def		temp	= R16
.def		duration= R17
;-----V E C T O R J U M P T A B L E ----------------
.org		0x00
		rjmp	Reset
LUT:
.db		0b01111011,0x05				;The Look Up Table starts from here
.db		0b01110111,0x02				;This table gives the situations of R+G, R+A,R+R
.db		0b01101111,0x01				;The last two bits of each low value is ignored
.db		0b11001111,0x05				;Low value stands for the off/on situation
.db		0b10101111,0x02				;High value stands for the duration time
.db		0b01101111,0x01				;
LUTEND:
;--
Reset:
		ldi		temp, low(RAMEND)		; Point the low byte of the Stack Pointer (SPL)
		out		SPL, temp			; to the end of SRAM
SetUp:
		ldi 		temp,0b11111100		;Take 6 ports from PORTA for output
		out 		DDRA,temp		;Set up DDRA
		ldi		XH,high(LUT<<1)		;Load the look up table
		ldi		XL,low(LUT<<1)		;Continue loading...
		ldi		YH,high(LUTEND<<1)	;Continue loading...
		ldi		YL,low(LUTEND<<1)	;Complete

Repeat:
		movw	Z,X				;Position the pointer to the first byte of the LUT
Display:
		lpm		temp,Z			;Fetch the next byte from the lookup table....
		out		PORTA,temp		;Output it to PORTA
		inc		ZL			;Move Z to the next value
		lpm		duration,Z			;pass the value of duration time to Z
		rcall	Hold				; Delay to admire!
		inc		ZL			; increment pointer...
		cp		ZL,YL			; is the pointer at LUTEND?
		brne	Display				; if not go back to Display
		rjmp	Repeat
;---
Delay1s:
; =============================
; delay loop generator
; 1000000 cycles:
; -----------------------------
; delaying 999999 cycles:
 ldi R20, $09
WGLOOP0: ldi R21, $BC
WGLOOP1: ldi R22, $C4
WGLOOP2: dec R22
 brne WGLOOP2
 dec R21
 brne WGLOOP1
 dec R20
 brne WGLOOP0
; -----------------------------
; delaying 1 cycle:
 nop
; =============================
	ret

Hold:
	rcall	Delay1s					;Delay for 1 sec
	dec	duration					;Decrease duration time value by 1
	brne	Hold					;Keep reapeating calling Delay1s until duration
	ret						; reaches 0

[bookmark: _Toc326922846]
(Part 2)

[bookmark: _Toc326922847]Media
 (
Jump wires
)[image:][image:]
 (
Power supply
) (
a
ll the components

)

[image:]
[image:]

 (
final
product
)

[bookmark: _Toc326922848]
Procedure
1. Using EAGLE™ the circuit diagram is complete.
2. Print the diagram on an oil-sensitive paper, take a piece of copper board with roughly same size. Use an electric iron to print the diagram on the paper over the copper board. If succeeded, the board should be as Picture 3 shows above.
3. Place the board in a pool of copper-eating compounds. After several minutes, except the traces covered by oil, all the other copper will be gone. Clean the board.
4. Drill; set up jump wires; place power input plug, micro- controller seat and switch.
5. Cut a piece of plastic board with the same size as the copper board.
6. Drill; Connect LED lights according to the circuit diagram.
7. Place the programmed micro-controller on the chip seat; Connect lights and switch between copper board and plastic board. Use four nails to fix the four corners of the two boards. The intersection simulator is complete.

[bookmark: _Toc326922849]Parts
1. LEDs 12
2. ATtiny24
3. Chip seat
4. Copper circuit board
5. Power port
6. Jump wires
7. Switch
8. Screws 4

[bookmark: _Toc326922850]
Activity 4. Intersection Simulator 2
[bookmark: _Toc326922851]Purpose
The purpose of this project is to upgrade the work done in previous activity and adds the function of doing a countdown at certain stage when the light is about to change. The picture below shows the prototype of the intersection simulator. The ATtiny24 chip on the left is connected to all the 6 LEDs. 2 of its spare ports are connected to a decoder on the right, which is charge of controlling which counter to turn on and outputting the value of in how many seconds the light is going to change.
[bookmark: _Toc326922852](Part 1)
[bookmark: _Toc326922853]Media

[image:]
[bookmark: _Toc326922854]Procedure
1. The whole system is archived by using interrupts.
2. Previously, the LUT are settled and the base lines to show the count down for each kind of light are added into the LUT.
3. A time counter is settled up as a interrupt. By setting up the starting bit value and pre-time scale, based on the counter of the chip(which increases 1 million per second), the time counter can function to decrease one per second.
4. In the main method, the method that keeps functioning is actually a wait loop doing nothing. Once the counter’s value reaches the base line, the program will display the value.
5. After the value reaches 0, the program will go to the next line in the LUT to generate a new counter and do all the work done above all over again.
[bookmark: _Toc326922855]Parts

	Quantity
	Part
	Description

	1
	ATtiny24
	14-pin DIP

	1
	Chip Seat
	14-pin DIP

	4
	Red LEDs
	SMM radial

	4
	Green
	

	4
	Amber
	

	2
	7-Segment Displays
	

	1
	BCD ECoder
	16-pin CMOS 4511

	1
	Chip Seat
	16-pin DIP

	--
	Resistors
	

	1
	Toggle switch
	SPST

	1
	DC jack
	5V

	1
	CCB Accrylic, Standoffs
	

[bookmark: _Toc326922856]Layout
[image:]
[bookmark: _Toc326922857]Code:
;Project: 	Intersection Simulator 2
;AUTHOR:	Reuben Sagman and Jiashi Zhu	
.include	"tn24def.inc"
;-----------Vector Jump Table--------------------------
.org		0x00
	rjmp	main
.org		OVF1addr
	rjmp	TIM1_OVF
;-----------LookUp State Table-------------------------
LUT:
.db 0b00100001,10,5,0
.db 0b00100010,3,0,0
.db 0b00100100,1,0,0
.db 0b00001100,10,5,0
.db 0b00010100,3,0,0
.db 0b00100100,1,0,0
LUTEND:
;-----------DEFINE VARIABLES---------------------------
.def		temp	=	R16
.def		count	=	R17
.def		segment	=	R18
.def		toggle	=	R19
;------EQUATES--
.equ		CLK		=	0x01
.equ		CLK8	=	0x02
.equ		CLK64	=	0x03
.equ		CLK256	=	0x04
.equ		CLK1024	=	0x05
;--
Main:
	ldi	temp,low(RAMEND)		;Load the size of the RAM into temp
	out	SPL,temp			;Establish pointer to top of Stack in RAM
	rcall	InitPorts			;Initialize PORTA and PORTB
	rcall	InitLUT				;Set up pointers for the Look Up Table
	rcall	InitTimerCounter1		;Initialize time counter, set starting point and scale
	rcall	NextTrafficState			;Start the
	sei					Enable Global Interrupts
Wait:
	rcall	Wait
;--
TIM1_OVF:
	rcall	ResetCnt1			;Set up the starting point of the time counter
	dec		count			;Count down
	brne	Continue			;If Count reahes the segment, continue.
	rcall	NextTrafficState			;Go to the next stage of the trafic light system
	reti					;return
Continue:
	out	PORTB,count			;Output the count down to PORTB
	cp	count,segment			;compare if count has reached segment default value.
	breq	Activate				;If it has, Activiate the segment
	reti
Activate:
	tst	toggle				;If toggle equals 0
	brne	Inverse				;If not, do inverse
	sbi	PORTA,PA6			;If it does, turn off bit of Segment A and
	cbi	PORTA,PA7			; turn on bit of Segment B
	ret
Inverse:
	sbi	PORTA,PA7			;If toggle = 0, turn on SegmentA.
	cbi	PORTA,PA6			; turn off SegmentB
	ret	
InitPorts:
	ser 	temp				;Set all 8 bits of PORTA and 4 bits of
	out	DDRA,temp			;PORTB for output use
	ldi	temp,0x0F
	out	DDRB,temp
	ret
InitLUT:
	ldi	XH,high(LUT<<1)		;Load the LUT and point the pointer
	ldi	XL,low(LUT<<1)			;Z at the beginning of the LUT
	ldi 	YH,high(LUTEND<<1)		;Set Y at the end of the LUT
	ldi	YL,low(LUTEND<<1)
movw	Z,X				;Move the pointer to the beginning of LUT
ret
InitTimerCounter1:
	ldi	temp,CLK;8			;Set up counter scale
	out	TCCR1B,temp			;
	rcall	ResetCnt1			;Set up the starting point of the time counter
	ldi	temp,1<<TOIE1
	out	TIMSK1,temp
	clr	toggle				;Set the toggle(boolean) to 0
	ret
NextTrafficState:
	sbi	PORTA,PA6			;Ground the bit on PortA for Segment A,
	sbi	PORTA,PA7			;Ground the bit on PortA for Segment A,
	com	toggle				;Switch the toogle's boolean value(T to F or F to T)
	lpm	temp,Z+				;Put the byte referenced by Z on PortA
	out	PORTA,temp			;Output the PortA value to turn on the LEDs
	inc	ZL				;Point the pointer to the next position
	lpm	count,Z+			;Set up the byte to count
	inc	ZL				;Point the pointer to the next position
	lpm	segment,Z+			;Set up the value as deafult segment
	inc	ZL				;Point the pointer to the next position
	cp	ZL,YL				;Compare Z with Y(if the pointer is at the LUTEND or not)
	brne	If				;If not, return directly
	movw	Z,X				;If it is, point the pointer back to the LUT beginning
If:	ret
ResetCnt1:
	ser		temp
	out		TCNT1H,temp
	ldi		temp,0xF0
	out		TCNT1L,temp
	ret
[bookmark: _Toc326922858]
(Part 2)
[bookmark: _Toc326922859]Media
	[image:]
	[image:]

	[image:]
drilling
	[image:]
parts

	[image:]
final product(top)
	[image:]
final product(bottom)

[bookmark: _Toc326922860]Procedure
1. The copper circuit board is made according to the layout in previous section.
2. Cut a piece of acrylic board with the same shape, four holes with appropriate size are drilled on both the copper board and acrylic board for the screws to go through.
3. In this intersction simulator, a time counter is added to both traffic ways. The counter starts at 10 seconds before the light shows up and the number appears at the beginning of the last 5 seconds.
4. Unlike the previous intersection project, the parts are welded directly onto the copper board.
5. ** In this project, unfortunately the acrylic board is missing. Also, because of the defective design of the layout, the over use of jump wires made it impossible to fit all the parts onto the board and work properly.
[bookmark: _Toc326922861]
Activity 5. Problems 1.14~1.18
p.32~33

[bookmark: _Toc326922862]1.14
Jiashi Zhu
Engineering Report
6/8/2012

72

a)
b)

	
	1111 1111
	

	-
	1000 0000
	Base

	
	0111 1111
	1’s complement

	+
	1
	

	
	1000 0000
	2’s complement

	
	1111 1111
	

	-
	0000 0000
	Base

	
	1111 1111
	1’s complement

	+
	1
	

	
	0000 0000
	2’s complement

c)

d)

	
	1111 1111
	

	-
	1101 1010
	Base

	
	0010 0101
	1’s complement

	+
	1
	

	
	0010 0110
	2’s complement

	
	1111 1111
	

	-
	0111 0110
	Base

	
	1000 1001
	1’s complement

	+
	1
	

	
	1000 1010
	2’s complement

e)
f)

	
	1111 1111
	

	-
	1000 0101
	Base

	
	0111 1010
	1’s complement

	+
	1
	

	
	0111 1011
	2’s complement

	
	1111 1111
	

	-
	1111 1111
	Base

	
	0000 0000
	1’s complement

	+
	1
	

	
	0000 0001
	2’s complement

[bookmark: _Toc326922863]1.15

a)
b)
	
	99 999 999
	

	-
	63 325 600
	Base

	
	36 674 399
	9’s complement

	+
	1
	

	
	36 674 400
	10’s complement

	
	99 999 999
	

	-
	52 784 630
	Base

	
	47 215 369
	9’s complement

	+
	1
	

	
	47 215 370
	10’s complement

c)
d)

	
	99 999 999
	

	-
	00 000 000
	Base

	
	99 999 999
	1’s complement

	+
	1
	

	
	00 000 000
	2’s complement

	
	99 999 999
	

	-
	25 000 000
	Base

	
	74 999 999
	1’s complement

	+
	1
	

	
	75 000 000
	2’s complement

[bookmark: _Toc326922864]1.16

a)
b)	B2FA=1011 0010 1111 1010

	
	FF FF

	-
	B2 FA

	
	4D 05

	+
	1

	
	4D 06

c)	
	
	1111 1111 1111 1111
	

	-
	1011 0010 1111 1010
	Base

	
	0100 1101 0000 0101
	1’s complement

	+
	1
	

	
	0100 1101 0000 0110
	2’s complement

d)	0100 1101 0000 0110=4D 06
	a)=d)
[bookmark: _Toc326922865]
1.17

a)	6428-3409=3019
b)	0125-1800=-1675

	
	9 999
	

	-
	3 409
	Base

	
	6 590
	9’s complement

	+
	1
	

	
	6 591
	10’s complement

	+
	6 428
	

	
	(1)3 019
	

	
	9 999
	

	-
	1 800
	Base

	
	8 199
	9’s complement

	+
	1
	

	
	8 200
	10’s complement

	+
	0 125
	

	
	8 325
	

	=>
	-1 675
	

c)	2043-6152=-4109
d)	1631-745=886

	
	9 999
	

	-
	6 152
	Base

	
	3 847
	9’s complement

	+
	1
	

	
	3 848
	10’s complement

	+
	2 043
	

	
	5 891
	

	=>
	-4 109
	

	
	9 999
	

	-
	0 745
	Base

	
	9 254
	9’s complement

	+
	1
	

	
	9 255
	10’s complement

	+
	1 631
	

	
	(1)0 886
	

[bookmark: _Toc326922866]1.18

a)
b)

	
	11 111
	

	-
	10 001
	Base

	
	01 110
	1’s complement

	+
	1
	

	
	01 111
	2’s complement

	+
	10 011
	

	
	(1)00 010
	

	
	111 111
	

	-
	100 011
	Base

	
	011 100
	1’s complement

	+
	1
	

	
	011 101
	2’s complement

	+
	100 010
	

	
	111 111
	

	=>
	-000 001
	

c)
d)

	
	111 111
	

	-
	101 000
	Base

	
	010 111
	1’s complement

	+
	1
	

	
	011 000
	2’s complement

	+
	1 001
	

	
	100 001
	

	=>
	-011 111
	

	
	111 111
	

	-
	010 101
	Base

	
	101 010
	1’s complement

	+
	1
	

	
	101 011
	2’s complement

	+
	110 000
	

	
	(1)011 011
	

[bookmark: _Toc326922867]
Activity 6. Altoids Speaker Project
[bookmark: _Toc326922868]Purpose
The purpose of this project is to build a portable speaker device for iPod and computers. The product and detailed procedures can be found in this website http://www.instructables.com/id/Altoids-Tin-Speaker/. The device is based on a circuit board powered by one AA battery fitting into an empty candy tin.
[bookmark: _Toc326922869]Parts of Circuit Board
 (
2
)
 (
9
) (
8
) (
7
) (
5
) (
4
) (
3
) (
1
)[image:]

 (
6
)

1. 100uF capacitor x3 + 220uF capacitor
2. chip seats x2
3. speaker
4. 0.1uF capacitor(104) x2 + 0.01 capacitor(103) + 0.047 capacitor(473)
5. 10 resistor
6. 1N 5818 diode + 1N4001 diode(missing)
7. MAX756 + LM386 + 22uH inductor
8. Audio jack
9. Battery pack
[bookmark: _Toc326922870]
BreadBoard-Prototype

[image:]

[image:]Above are the rendering and the photo of the prototype. The MAX756 works as a power boost to increase the voltage from the battery. The jack accepts signal from TRS connectors and pass it to the LM386. By connecting Pin 1 and Pin 5 of LM386 the volume can be increased.
[bookmark: _Toc326922871]
Final Assembly
The process of the entire assembly is shown as follows: [image:]
[image:]

Here is the circuit diagram of the main board and a photo of the board with all the components installed as comparison.

	[image:]
	[image:]
	[image:]

For the vulnerable components such as switch, battery holder, and the audio jack, pieces of heat shrink tubes are attached at the connections of the wire and the component Heat shrink tubes can tie various wires together to keep the circuit clear and also protect wires from breaking apart during the installation.
[image:]

Note that a wire is attached to connect the two signal lugs to merge the channels together.
	[image:]
	[image:]

	[image:]
	[image:]

1. The components are connected to the board as the picture shows.
2. The candy tin is drilled with 29 small holes on the surface for sound to pass through, and 2 larger holes at side for the switch and 3.5mm audio jack to fit in. The whole bottom is covered with paper to prevent the metal surface from creating short circuits on the board.
3. All the connected parts are installed into the tin box as the picture shows.
4. Final product. Tested with various input, the speaker works well and stable.
[bookmark: _Toc326922872]
Activity 7. Altoids USB Charger Project
[bookmark: _Toc326922873]Purpose
This project is created to build a iPod charger with two AA batteries using a Altoids chew gum tin. More detailed descriptions and parts are available at http://www.ladyada.net/make/mintyboost/index.html.

[bookmark: _Toc326922874]Media

	[image:]
Overall look

	[image:]
Battery holder and USB circuit

	[image:]
Circuit board (front)
	[image:]
Circuit board(back)

[bookmark: _Toc326922875]
Parts
1. 5V boost converter LT1302VN8-5
2. 8-pin socket
3. Power supply capacitor 220uF x2
4. Bypass capacitor 0.1uF x2
5. 100k 1/4w 5% resistor x2
6. 1N5818 diode
7. 10uH power inductor
8. USE type A female pack
9. 2x AA battery holder
10. Circuit board
[bookmark: _Toc326922876]Procedure
The working principle of the circuit is shown as the schematic：
[image:]
The most important part of the whole circuit board is the boost converter chip that boosts the 2.4 voltage provided by the two AA batteries to 5V for the devices.
[image:]A power boost usually functions with at least one transistor and one diode. The quality of a power boost largely depends on its efficiency during transmitting.

In this project, the boost converter is selected to be LT1302VN8-5. (Detailed schematic on the left).

 LT1302 can operate from a supply voltage as low as 2V and feature automatic shifting between Burst Mode operation at light load, and current mode operation at heavy load. The internal low loss NPN power switch can handle current in excess of 2A and switch at frequencies up to 400kHz.
[bookmark: _Toc326922877]
2011 Exam: Conway’s Game of Life
[bookmark: _Toc326922878]Purpose:
The purpose of this project is to build two 4 by 4 LED matrix models to simulate the Game of Life.(http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life) The whole project is supported by ladyada.net(http://www.ladyada.net/make/conway/solder.html).
[bookmark: _Toc326922879]Media
	[image:]
raw board
	[image:]
Resistors (x16)

	[image:]
Green LED (x16)
	[image:]
Board with LED and resistors soldered

	[image:]
The connecting model with ports to connect to other models(final)
	[image:]
Independent model, with battery seat connected and protective case(final)

[bookmark: _Toc326922880]Parts
1. Microcontroller
2. 28-pin socket
3. Ceramic 0.1uF capacitor
4. 100 ohm 1/4W 5% resistor x16
5. 5mm Green LED x16
6. 6mm tact switch button
7. 2 x AA battery holder
8. Circuit board
9. right-angle headers

[bookmark: _Toc326922881]Procedure
More detailed instructions can be found at http://www.ladyada.net/make/conway/solder.html.

1. The Schematic of the circuit board is shown as following:

[image:]
2. Find all the ports marked R1, R2, R3... Place the resistors at those spots and solder their legs onto the board from the backside.
3. Use the cutters to remove the expletory legs. Repeat to all 16 resistors.
4. Find all the ports marked LED1, LED2, LED3... Place LEDs at those spots. Notice that the longer leg of the LED is supposed to go to the positive pole.
5. Use the cutters to remove legs of LEDs.
6. Using a jump wire(can be replaced with one of the expletory legs), connect the two ports at side of IC2. Solder it onto the board.
7. Place the capacitor at the Port C3. Solder it.
8. Solder the chip seat onto the spot IC1, solder it. Place the chip onto the chip seat.
9. Place the ON/OFF/Reset button. Solder the four legs.
10. For the independent model, connect the wires of battery holder to the pwr spot. Solder it. For the connecting model, Solder the right-angle headers at the four sides of the board.

[bookmark: _Toc326922882]
TEI4M. Arduino

[bookmark: _Toc326922883]Project 1. A BiColor LED Flasher
[bookmark: _Toc326922884]Purpose
The purpose of this project is to develop a Arduino application that flashes a Red/Green Bicolor LED in response to commands entered into the Serial Monitor. The LED used in this project is the T-1 ¾ HLMP-40xx.
[bookmark: _Toc326922885]Reference
Details about the HLMp-40xx can be found here. http://darcy.rsgc.on.ca/ACES/TEI3M/Datasheets/BiColorLED.pdf
The project can be found here.
http://darcy.rsgc.on.ca/ACES/TEI3M/Tasks/1112Tasks.html#BiColorLEDTransmitter
Arduino Official
http://arduino.cc/en/

[bookmark: _Toc326922886]Method
The way that the program is designed is very easy. The cathode of the HLMP-40xx is connected to the ground pin on the Arduino. The red and green anodes are connected to two of the 13 pins available. In this project I used pin 12 &13. The program just simply recognizes the input character and sets the corresponding pin to high to light the led up, delays for 0.5 second and sets it to low to turn it off.

[bookmark: _Toc326922887]Sketch
int redPin= 12;	Comment by CDArcy: This is how I prefer your code to be presented this year.
int greenPin=13;
int Delay=500;

 void setup(){
 pinMode(redPin, OUTPUT);
 pinMode(greenPin, OUTPUT);
 Serial.begin(9600);
 }

 void loop(){
 char ch;
 if(Serial.available())
 {
 ch = Serial.read();
 if (ch=='G' || ch=='g')
 flash(greenPin);
 else if (ch== 'r' || ch=='R')
 flash(redPin);
 }
 }

 void flash(int led)
 {
 digitalWrite(led, HIGH);
 delay(Delay);
 digitalWrite(led, LOW);
 delay(Delay);
 }
[bookmark: _Toc326922888]
Media
	 (
Red Anode
) (
Green Anode
)[image:]
 (
Cathode
)the HLMP-40xx
	[image: ::Downloads:moto_0250.jpg]	Comment by CDArcy: Where’s the photo and/or video of your working circuit?
the Arduino Uno

	
	

[bookmark: _Toc326922889]
Project 2. High Brightness Luxeon LED

[bookmark: _Toc326922890]Purpose
This project is based on the Morse Code Project and an improved version with a supportive Arduino shield. (Morse Code Project is from the book: 30 Arduino Projects for the Evil Genius)

[bookmark: _Toc326922891]Reference
Arduino Evil Genius
http://www.arduinoevilgenius.com/
Arduino proto shield
http://www.ladyada.net/make/pshield/
LM117 regulator
http://darcy.rsgc.on.ca/ACES/TEI3M/Datasheets/LM117.pdf

[bookmark: _Toc326922892]Method
There are several external parts needed to make the 1W Luxeon LED to function.
1 W 4 Ω resistor
330 Ω resistor
LM117 3 Terminal Adjustable Regulator	

To build the proto shield, following components are needed.
Printed circuit board
3mm Red LED
470-1.0K Resistors for LED
0.1uF 50V ceramic capacitor
36 pin male 0.1" header

Procedures to assemble the shield can be found here. http://www.ladyada.net/make/pshield/solder.html After the shield is ready, the LED is arranged onto the shield as the picture in media section below shows. The power source for the whole circuit comes out from the standard 5V pin and ground pin on the Arduino (shield).
The 1W 4Ω resistor is connected directly to the 5V power pin and the other side goes to the positive side of the Luxeon LED.
The negative side of the LED is connected to the middle leg of the regulator, the output.
For the regulator, its adjustment leg is connected to be grounded and its input leg is connected to the 330Ω resistor and then the pin 12 on the Arduino board, which controls the pattern of the light.

[bookmark: _Toc326922893]
Sketch
	
int ledPin= 12;	Comment by CDArcy: Good presentation

char* letters[]={
 ".-", "-...", "-.-.", "-..", ".", "..-.", "--.", "....", "..", //A-I
 ".---", "-.-", ".-..", "--", "-.", "---", ".--.", "--.-", ".-.", //J-R
 "...", "-", "..-", "...-", ".--", "-..-", "-.--", "--.."

};

char* numbers[]= {
 "-----", ".----", "..---", "...--", "....-", ".....", "-....", "--...",
 "---..", "----." };

 int dotDelay=200;

 void setup(){
 pinMode(ledPin, OUTPUT);
 Serial.begin(9600);
 }

 void loop(){
 char ch;
 if(Serial.available())
 {
 ch = Serial.read();
 if (ch>='a' && ch<='z')
 flashSequence(letters[ch-'a']);

 else if (ch>='A' && ch<= 'Z')
 flashSequence(letters[ch-'A']);
 else if (ch>='0' && ch<= '9')
 flashSequence(numbers[ch-'0']);
 else if(ch==' ')
 delay(dotDelay*4);

 }
 }

 void flashSequence(char* sequence)
 {
 for (int i=0; sequence[i]!=NULL; i++)
 flashDotOrDash(sequence[i]);

 delay(dotDelay*3);
 }

 void flashDotOrDash(char i){
 digitalWrite(ledPin, HIGH);
 if(i =='.')
 delay(dotDelay);
 else delay(dotDelay*3);
 digitalWrite(ledPin, LOW);
 delay(dotDelay);
 }

[bookmark: _Toc326922894]Media
	[image:]	Comment by CDArcy: Love the photos, but they are not photos of your work.

Where are they?
Assembled Proto Shield(click to zoom)

	[image:]The overview of tested breadboard
(click to zoom)

	[image:]
The 1 W Luxeon LED used in this project
	[image:]
The finished product (on the website)

	[image: :Desktop:moto_0252.jpg]
final product
	

[bookmark: _Toc326922895]
Project 3. S.A.D. Light

[bookmark: _Toc326922896]Purpose
The purpose of this project is to create a S.A.D light panel with the Luxeon high-brightness LED, the same used in last project. An S.A.D light is a device that provides white light that mimic daylight to make benefit to people that suffers seasonal affective disorder.
[bookmark: _Toc326922897]Reference
This project is based on the instruction of 30 Arduino Projects for the Evil Genius
 By Simon Monk.
http://www.arduinoevilgenius.com/home
[bookmark: _Toc326922898]Parts List
	
Quantity

	

Components

	

1

	

Arduino

	

6

	
Luxeon 1W LED

	

3

	

1 KΩ 0.5W metal film resistor

	

2

	

4 Ω 2W resistor

	

1

	

100K linear potentiometer

	

2

	

LM317 Voltage regulator

	

2

	

2N7000 FET

	

1

	

Regulated 15V 1A power supply

	

1

	

Perf board

	

1

	

Three-way screw terminal

[bookmark: _Toc326922899]Procedure
[image:]

[image:]

The picture above shows a very clear layout for the arrangement of the board in schematic diagram and a perf board preview.

1. This project requires 15V for the six Luxeon LEDs and 5V for the regulators. Both power sources are provided by different pins on the Arduino.
2. In order to give the light the effect of fading on and off, normal digital pins cannot be used. To access PVM for maximum efficiency and power savery, analog pin 11 is settled to write mode and provides an output from 0 to 255, which each represents off and fully on.
3. Two 2N7000 FETs receive the output from pin 11 and work as a switch. Only when a high enough voltage is passed, it will connect and turn off all the LEDs.
4. The time period of the six Luxeon LEDs is depended on variable resistor. The value of the resistor is transferred to analog pin 2 on the Arduino. By increasing the resistor value, the period for one cycle becomes longer.

[bookmark: _Toc326922900]
Sketch
	int ledPin = 11;
int analogPin = 2;

int startupSeconds = 20;
int turnOffSeconds = 10;
int minOnSeconds = 300;
int maxOnSeconds = 1800;

int brightness = 0;

void setup()
{
 pinMode(ledPin, OUTPUT);
 digitalWrite(ledPin,HIGH);
 pinMode(14, OUTPUT);
 pinMode(18, OUTPUT);
 digitalWrite(18, HIGH);
 int analogIn = analogRead(analogPin);
 int onTime = map(analogIn, 0, 1023, minOnSeconds, maxOnSeconds);
 turnOn();
 delay(onTime * 1000);
 turnOff();
}

void turnOn()
{
 brightness = 0;
 int period = startupSeconds * 1000 / 256;
 while (brightness < 255);
 {
 analogWrite(ledPin, 255 - brightness);
 delay(period);
 brightness ++;
 }
}

void turnOff()
{
 int period = turnOffSeconds * 1000 / 256;
 while (brightness >= 0)
 {
 analogWrite(ledPin, 255 - brightness);
 delay(period);
 brightness --;
 }
}

void loop()
{}

[bookmark: _Toc326922901]
Media
	[image: :Desktop:IMG_0132.jpg]
back
	[image: :Desktop:IMG_0130.JPG]
front

	[image: :Desktop:IMG_0133.jpg]
Rendering
	

[bookmark: _Toc326922902]
Project 4: Alphanumeric (16-Segment) Display
[bookmark: _Toc326922903]Purpose
The purpose of this project is to show the English alphabet and Arabic numbers with a 16-segemnt display kit.
[image:]

[bookmark: _Toc326922904]Reference
Alphanumeric LED Display Library http://17segment.blogspot.com/
Arduino Library http://arduino.cc/en/Hacking/Libraries

[bookmark: _Toc326922905]Pin/Segment Map

	[image:]
Segment map
pins’ position(up to down):
Left: 1~9
Right:18~11, dot pin:10
	[image: :Desktop:Screen Shot 2011-10-23 at 11.29.53 PM.png]
Matched sequence of the pins on the segment

[bookmark: _Toc326922906]
Sketch
The program blueprint used in this project is from http://17segment.blogspot.com/.
The knowledge of “Libraries” in Arduino is required. The language used to build the library is in c.

	BasicUseLoop.pde

/*
 Created by Ben Duncan - 7 April, 2009
 Shared under Creative Commons
 Give easy control of Alphanumeric LED displays
 (Kingbright type)
 */

#include <Sts.h> // Include the Seventeen Segment library

Sts sts; // Create the Sts object
void setup(){
}

void loop() {
 for(int i=0; i<26; i++){
 sts.displayChar(i); // Display the capital character
 delay(500); // Wait 1/2 second
 }
 for(int i=0; i<10;i++){
 sts.displayNumb(i); // Display the number
 delay(500); // Wait 1/2 second
 }
}

	Sts.h

/*
 Created by Ben Duncan - 7 April, 2009
 Shared under Creative Commons
 Give easy control of Alphanumeric LED displays
 (Kingbright type)
 */

#ifndef Sts_h
#define Sts_h

#include "WProgram.h"

class Sts
{
 public:
 int _charNum;
 void displayChar(int _charNum);
 void displayNumb(int _charNum);
 byte charactersCap[26][16];
 byte numbers[10][16];
 private:
 void setPins();
};
#endif

	Sts.cpp

/* Created by Ben Duncan - 7 April, 2009
 Shared under Creative Commons
 Give easy control of Alphanumeric LED displays
 (Kingbright type)
 */
#include "WProgram.h"
#include "Sts.h"

byte characters[26][16] = {
 {1,0,0,1,1,0,0,1,0,0,1,0,1,1,0,1}, // A
 {1,0,0,1,0,0,0,1,1,1,0,1,0,0,1,1}, // B
 {1,0,0,1,0,0,0,1,1,1,0,0,0,0,0,1}, // C
 {1,0,0,1,0,0,0,1,1,1,0,1,0,1,0,1}, // D
 {1,0,0,1,0,0,0,1,1,1,0,0,0,1,0,1}, // E
 {1,0,0,1,1,0,0,1,0,0,0,0,0,0,0,1}, // F
 {1,0,0,1,0,0,0,1,1,1,1,0,1,0,0,1}, // G
 {0,0,0,1,1,0,0,1,0,0,1,0,1,1,0,0}, // H
 {1,1,0,0,0,1,0,0,1,1,0,0,0,0,0,1}, // I
 {1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1}, // J
 {0,0,0,1,1,0,0,1,0,0,0,1,0,0,1,0}, // K
 {0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0}, // L
 {1,1,0,1,0,0,0,1,0,0,1,0,0,1,0,1}, // M
 {0,0,1,1,0,0,0,1,0,0,1,1,0,1,0,0}, // N
 {1,0,0,1,0,0,0,1,1,1,1,0,0,1,0,1}, // O
 {1,0,0,1,1,0,0,1,0,0,0,0,1,1,0,1}, // P
 {1,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1}, // Q
 {1,0,0,1,1,0,0,1,0,0,0,1,1,1,0,1}, // R
 {1,0,0,1,1,0,0,0,1,1,1,0,1,0,0,1}, // S
 {1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1}, // T
 {0,0,0,1,0,0,0,1,1,1,1,0,0,1,0,0}, // U
 {0,0,1,0,0,0,0,0,0,0,1,1,0,1,0,0}, // V
 {0,0,0,1,0,1,0,1,1,1,1,0,0,1,0,0}, // W
 {0,0,1,0,0,0,1,0,0,0,0,1,0,0,1,0}, // X
 {0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0}, // Y
 {1,0,0,0,0,0,1,0,1,1,0,0,0,0,1,1}}; // Z

byte numbers[10][16] = {
 {1,0,0,1,0,0,0,1,1,1,0,1,0,1,0,1}, // 0
 {1,1,0,0,0,1,0,0,1,1,0,0,0,0,0,0}, // 1
 {1,0,0,0,1,0,0,0,1,1,0,0,1,0,0,1}, // 2
 {1,0,0,0,1,0,0,0,1,1,1,0,1,1,0,1}, // 3
 {0,0,0,1,1,0,0,0,0,0,1,0,1,1,0,0}, // 4
 {1,0,0,1,1,0,0,0,1,1,1,0,1,0,0,1}, // 5
 {1,0,0,1,1,0,0,1,1,1,1,0,1,0,0,1}, // 6
 {1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1}, // 7
 {1,0,0,1,1,0,0,1,1,1,1,0,1,1,0,1}, // 8
 {1,0,0,1,1,0,0,0,1,1,1,0,1,1,0,1}}; // 9

void Sts::setPins(){
 for(int i=2; i<17;i++){
 pinMode(i, OUTPUT);
 }
}

void Sts::displayChar(int _charNum)
{
 for(int i=0; i<15;i++){
 digitalWrite((i+2), characters[_charNum][i]);
 }
}

void Sts::displayNumb(int _charNum)
{
 for(int i=0; i<15; i++){
 digitalWrite((i+2), numbers[_charNum][i]);
 }
}

[bookmark: _Toc326922907]Media
	[image: :Desktop:moto_0255.jpg]
	[image: :Desktop:moto_0254.jpg]

	
	

[bookmark: _Toc326922908]Custom Sketch
	String chars="ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789";
String input="";
int index;

/*
 Created by Ben Duncan - 7 April, 2009
 Shared under Creative Commons
 Give easy control of Alphanumeric LED displays
 (Kingbright type)
 */

#include <Sts.h> // Include the Seventeen Segment library

Sts sts; // Create the Sts object
void setup(){
 Serial.begin(9600);
 sts.setPins();
 sts.blank();

}

void loop() {

 while(Serial.available()){
 char recv=Serial.read();
 input=recv;
 input=input.toUpperCase();
 Serial.print(input);
 displayString(input);
 sts.blank();

 }
}

void displayString(String str){
 for (int i=0;i<str.length();i++){
 index=chars.indexOf(str.charAt(i));
 if (index<26)
 sts.displayChar(index);
 else if(index==26)
 sts.blank();
 else sts.displayNumb(index-27);
 delay(500);
 sts.blank();
 }
}

This code above allows the segment to display texts(letters and numbers) input from the serial monitor of the Arduino program.
[bookmark: _Toc326922909]
Appendix C. Monthly Projects
[bookmark: _Toc326922910]October 2011: XBee Wireless Solution
[bookmark: _Toc326922911]Reference
This project is powered by kits and instructions from sparkfun.com.
Link for tutorial: http://www.sparkfun.com/tutorials/194
[bookmark: _Toc326922912]Purpose
Sometimes the Arduino needs to function while placed in some portable devices. Then it would hard for the programmer to connect the Arduino to computers with USB wires. The purpose of this project is to solve such problems by using two XBee chips to transfer data wirelessly between Arduino and computers.
[bookmark: _Toc326922913][image:]Parts List

XBee 1mW Chip Antenna Modules (XBee s1) x2
Arduino Stackable Header x4
XBee Shield PCB
XBee Explorer USB

[bookmark: _Toc326922914]Description
Sparkfun.com provides Arduino shield PCB and USB explorer set.
The assembly procedures can be found in the link in Reference Section.
Either chip can work as the receiver or the sender.

The USB explorer connects to the computer through a mini-USB cable.

[image: :moto_0257.jpg][image: :moto_0258.jpg]

Primary pins (the picture on the left) are settled at the back of the board for convenience of advanced development to the XBee chip such as wireless bootloading. Unfortunately the Arduino model used (Uno) has too high a baud rate for the XBee to trace. So the advanced functions may not be achievable in this project.

With the shield PCB the XBee kit can stack up on the Arduino and become compatible with other projects based on it.
[image: :moto_0256.jpg]

By adding the XBee shield to the Arduino, which is programmed to perform the last project -- 16-segemnt displays, the kit is now able to receive text from computers on the other side of the room. Technically the maximum range of the s1 XBee chips is up to 300 feet.
[bookmark: _Toc326922915]Summary
Wireless function doesn’t necessarily show its advantage and significance when working with 16-segment displays that are fixed to a breadboard. However, in the following projects for the greenhouse, the same function will be applied to various sensors so that data of temperature or moisture in the greenhouse can be collected wirelessly from the computer room several feet away.
[bookmark: _Toc326922916]
Project 5. Thermal Management

[bookmark: _Toc326922917]Part 1. NTC Thermistor
[bookmark: _Toc326922918]Reference
http://darcy.rsgc.on.ca/ACES/TEI3M/Tasks/1112Tasks.html#Thermal1
http://en.wikipedia.org/wiki/Thermistor
http://www.arduino.cc/playground/ComponentLib/Thermistor2
http://www.arduino.cc/en/Math/H

[bookmark: _Toc326922919]Purpose
[image:]The purpose of this project is to add a NTC Thermistor to the Arduino and receives resistance value that changes according to the temperature (in a negative exponential pattern) The current temperature can be calculated based on the given resistance value.
[bookmark: _Toc326922920]Principle
The principle of calculation of the changes of resistance value is shown as the picture beside.
The NTC Thermistor is connected to a variable resistor, whose value is fixed at 10k Ω, in a serial connection. In the middle a wire connects the NTC Thermistor to the analog0 pin on Arduino for the reading of the voltage travels through the thermistor.
The resistor value then can be calculated with such formula:
From the information provided by Wikipedia, the temperature should be:
[image: :Desktop:moto_0261.jpg]
[bookmark: _Toc326922921]Parts List
NTC Thermistor(TOC310)
Arduino Uno
Variable resistor
Wires
Breadboard

[bookmark: _Toc326922922]Media
 (
NTC Thermistor
Variable resistor
Power
Ground
Analog0
)

[image: :Desktop:Screen Shot 2011-11-14 at 3.13.15 AM.png]Breadboard Layout(powered by Fritzing)
[bookmark: _Toc326922923]
Part 2. Serial Communications Using Processing
[bookmark: _Toc326922924]Reference
http://pscmpf.blogspot.com/2008/12/arduino-lm35-sensor.html
http://www.processing.org/
http://darcy.rsgc.on.ca/ACES/TEI3M/Tasks/1112Tasks.html#Thermal2
[bookmark: _Toc326922925]Purpose
As an advanced version of the previous project, the purpose of this project is to print the results from last project on a graphic interface on the computer. Arduino program is too limited for such function. Therefore a driver coded in Processing language (the language Arduino code based on). It receives the value of temperature instead of the serial monitor of Arduino and then draws a scale bar and dot diagram to display the change of the temperature in a period of time.
[bookmark: _Toc326922926]Parts List
NTC Thermistor (TOC310)
Arduino Uno
Variable resistor
Wires
Breadboard
(Though this project is still based on the NTC Thermistor, soon it will be replaced with a more efficient and effective Precision Centigrade Sensor (LM35DZ).
[bookmark: _Toc326922927]Procedure
The program on the Arduino is almost the same as the one in last project. The only difference is: when the temperature data is passed to the computer, it’s transferred into byte format for Processing driver to do the calculation more easily. Note that when the data is sent, the method print() must be used instead of println()to avoid the data interruption.

The Processing code is provided by http://pscmpf.blogspot.com/2008/12/arduino-lm35-sensor.html. It has two major functions. It draws a rectangle as the scale bar and a square as the frame for the dot diagram. After the temperature value is calculated, it’s displayed on both the scale bar and the diagram. An array is created to store all the values to show the pattern of temperature change on the dot diagram.
[bookmark: _Toc326922928]
Media
[image: :Desktop:Screen Shot 2011-11-21 at 2.04.13 AM.png]The breadboard layout is the same as last project.
A video demo of this project running can be found here.
http://mail.rsgc.on.ca/~azhu/tempread2.mov

[bookmark: _Toc326922929]Sketch
Arduino part:
	#include <Math.h>
int ana0=0;
double R1;
double rinf=0.01066;
double temp;

void setup() {
 Serial.begin(9600);
}

void loop() {
 ana0 = analogRead(A0);
 R1 =(1023.0-ana0)*10000/ana0;
 temp =4100/log(R1/rinf);
 temp-=273;
 Serial.print((byte)temp);
 delay(1000);
}

Processing Part:
	//import Serial communication library
import processing.serial.*;

//init variables
Serial commPort;
float tempC;
float tempF;
int yDist;
PFont font12;
PFont font24;
float[] tempHistory = new float[100];

void setup()
{
 //setup fonts for use throughout the application
 font12 = loadFont("Verdana-12.vlw");
 font24 = loadFont("Verdana-24.vlw");

 //set the size of the window
 size(210, 200);

 //init serial communication port
 String output= Serial.list()[0];
 commPort = new Serial(this, output, 9600);

 //fill tempHistory with default temps
 for(int index = 0; index<100; index++)
 tempHistory[index] = 0;
}

void draw()
{
 //get the temp from the serial port
 while (commPort.available() > 0)
 {
 tempC = commPort.read();

 //refresh the background to clear old data
 background(123);

 //draw the temp rectangle
 colorMode(RGB, 160); //use color mode sized for fading
 stroke (0);
 rect (49,19,22,162);
 //fade red and blue within the rectangle
 for (int colorIndex = 0; colorIndex <= 160; colorIndex++)
 {
 stroke(160 - colorIndex, 0, colorIndex);
 line(50, colorIndex + 20, 70, colorIndex + 20);
 }

 //draw graph
 stroke(0);
 fill(255,255,255);
 rect(90,80,100,100);
 for (int index = 0; index<100; index++)
 {
 if(index == 99)
 tempHistory[index] = tempC;
 else
 tempHistory[index] = tempHistory[index + 1];
 point(90 + index, 180 - tempHistory[index]);
 }

 //write reference values
 fill(0,0,0);
 textFont(font12);
 textAlign(RIGHT);
 text("212 F", 45, 25);
 text("32 F", 45, 187);

 //draw triangle pointer
 yDist = int(160 - (160 * (tempC * 0.01)));
 stroke(0);
 triangle(75, yDist + 20, 85, yDist + 15, 85, yDist + 25);

 //write the temp in C and F
 fill(0,0,0);
 textFont(font24);
 textAlign(LEFT);
 text(str(int(tempC)) + " C", 115, 37);
 tempF = ((tempC*9)/5) + 32;
 text(str(int(tempF)) + " F", 115, 65);
 }
}

[bookmark: _Toc326922930]
Part 3. Precision Centigrade Sensor (LM35DZ)
[bookmark: _Toc326922931]Reference
http://www.ectinschools.org/page.php?ps=2&p=928
http://darcy.rsgc.on.ca/ACES/TEI3M/Datasheets/LM35.pdf
http://pscmpf.blogspot.com/2008/12/arduino-lm35-sensor.html
[bookmark: _Toc326922932]Purpose
A more efficient and simple thermistor is used to replace the NTC thermistor. The LM35DZ provides a more straight-forward reading as a response to the temperature change. The LM35DZ is also used by the original producer of previous project.
	[image: ttp://shop.rabtron.co.za/catalog/images/ntcx.jpg]
NTC Thermistor
	[image: ttp://www.modtronix.com/images/to92.jpg]
LM35DZ

	-Rate to temperature change is exponential
-Complex formula in program for temperature
-Requires a variable resistor to regulate the voltage passed through
	-Rate to temperature change is linear
-Easy calculation in program
-Requires no extra component’s assistance

This purpose of this project is to assemble the LM35DZ onto the breadboard and modify the code to display temperature properly. Preparation for multiple sensors (our next project) is also done.
[bookmark: _Toc326922933][image: :Desktop:Screen Shot 2011-11-28 at 1.23.26 AM.png]Procedure
According to the datasheet of DM35LZ, the left pin connects to the 5V output of Arduino, and middle connects to pin Anlog0 for data input. The right pin goes to the Ground. After that the assembly is done.
In Arduino, the original code suggests such formula for temperature:
T(ºC)=byte(Analog0*5*100.00/1024)

In Processing, lots of changes need to be made to meet the needs of multiple sensors. The following is my design of the interface.

	[image: :Desktop:Screen Shot 2011-11-21 at 2.04.13 AM.png]
	[image: :Desktop:Screen Shot 2011-11-28 at 1.36.27 AM.png]

Approximately 9 sensors will be used in the following project. Because there are several readings displaying at the same time, number value of the temperature is deleted. The diagram is enlarged and scaled for more accurate readings. 9 temperature bars are color-coded and will match with the lines in the diagram. The scale of the temperature (minimum and maximum) can be changed to zoom to the preferable range.
[bookmark: _Toc326922934]Parts List
Less: NTC Thermistor (TOC310)
Arduino Uno
Less: Variable resistor
Wires
Breadboard
Add: LM35DZ
[bookmark: _Toc326922935]Sketch
Arduino:
	//declare variables
float tempC;
int tempPin = 0;

void setup()
{
Serial.begin(9600); //opens serial port, sets data rate to 9600 bps
}

void loop()
{
tempC = analogRead(tempPin); //read the value from the sensor
tempC = (5.0 * tempC * 100.0)/1024.0; //convert the analog data to temperature
Serial.print((byte)tempC); //send the data to the computer
delay(100); //wait one second before sending new data
}

Processing:
	//import Serial communication library
import processing.serial.*;

//init variables
Serial commPort;
int numSensors=9;
float tempC;
float tempF;
int yDist;
PFont font12;
PFont font24;
PFont font8;
int bkgrd = 123;
int width=600;
int height=400;

//graph values
int sqrx=240;
int sqry=50;
int sqrLength=300;
float[] tempHistory = new float[sqrLength];

//scale values
int cMin=20;
int cMax=50;
int cNum=5;
int timeNum=10;
int timeMax=50;

//temp bar values
int barWidth=20;
int barLength=100;
int barSpace=30;
int startx=50;
int starty=20;

//palatte
 int[][] colors= {{0,0,0},{255,36,0},{255,246,143},
 {0,238,0},{0,245,255},{0,0,156},
 {185,211,238},{205,127,50},{105,89,205}
 };

void setup()
{
 //setup fonts for use throughout the application
 font12 = loadFont("Verdana-12.vlw");
 font24 = loadFont("Verdana-24.vlw");
 font8 = loadFont("Verdana-8.vlw");

 //set the size of the window
 size(width, height);

 //init serial communication port
 String output= Serial.list()[0];
 commPort = new Serial(this, output, 9600);

 //fill tempHistory with default temps
 for(int index = 0; index<100; index++)
 tempHistory[index] = 0;

 background(bkgrd);
 stroke (0);
 for (int i=0; i<3; i++) {
 for (int j=0;j<3;j++){
 int x=startx+j*(barWidth+barSpace);
 int y=starty+i*(barSpace+barLength);

 //draw the temp rectangle
 rect(x,y,barWidth,barLength);

 //fade red and blue within the rectangle
 colorMode(RGB, barLength); //use color mode sized for fading
 for (int colorIndex = 0; colorIndex <= barLength; colorIndex++){
 stroke(barLength - colorIndex, 0, colorIndex);
 line(x, colorIndex+y, x+20, colorIndex+y);
 }

 //color code the rectangles
 colorMode(RGB, 255); //reset color mode
 stroke (bkgrd);
 fill(colors[3*i+j][0],colors[3*i+j][1],colors[3*i+j][2]);
 rect(x,y-15,20,10);
 }
 }

 //write reference values
 fill(0,0,0);
 textFont(font12);
 textAlign(RIGHT);
 text(cMax+" C", startx-5, starty+5);
 text(cMin+" C", startx-5, starty+barLength+5);

 //scales &Title
 textFont(font24);
 text("J.Z:Multiple LM35DZs",sqrx+sqrLength/2+120,sqry-20);
 text("C",sqrx-15,sqry+sqrLength/2);
 text("Time(s)",sqrx+sqrLength/2+30,sqry+sqrLength+45);

 textFont(font8);
 textAlign(RIGHT);
 for(int i=0;i<cNum+1;i++){
 int stage=(cMax-cMin)/cNum;
 text(cMin+stage*i,sqrx-5,sqry+3+sqrLength/cNum*(cNum-i));
 }
 for(int i=0;i<timeNum+1;i++){
 int step=sqrLength/timeNum;
 text(i*timeMax/timeNum,sqrx+5+i*step,sqry+sqrLength+15);
 }
}

void draw() {
 stroke(0);
 //get the temp from the serial port
 while (commPort.available() > 0) {
 tempC = commPort.read();

 //refresh the background to clear old data

 //draw graph
 fill(255,255,255);
 rect(sqrx,sqry,sqrLength,sqrLength);
 smooth();
 strokeWeight(2);
 for (int index = 0; index<sqrLength; index++) {
 stroke(colors[0][0],colors[0][1],colors[0][2]);
 if(index == 299)
 tempHistory[index] = tempC;
 else
 tempHistory[index] = tempHistory[index + 1];
 point(sqrx + index, sqry+sqrLength - (tempHistory[index]-cMin)/cMax*sqrLength);
 }
 strokeWeight(1);

 //draw triangle pointer
 fill(bkgrd);
 noStroke();
 for(int i=0; i<3;i++){
 int x=72+i*50;
 rect(x,0,25,height);
 }
 yDist =starty+barLength-int((tempC-cMin)/cMax*barLength);
 stroke(0);
 fill(0);
 int trix=startx+barWidth+5;
 triangle(trix, yDist, trix+10, yDist-5, trix+10, yDist+5);

 }

}

[bookmark: _Toc326922936]Media

	[image:]
Assembly

	[image:]
Breadboard Layout(powered by Fritzing)

[bookmark: _Toc326922937]
Part 4. Multiple Sensors: Polling
[bookmark: _Toc326922938]Reference
http://www.ectinschools.org/page.php?ps=2&p=928
http://darcy.rsgc.on.ca/ACES/TEI3M/Datasheets/LM35.pdf
http://pscmpf.blogspot.com/2008/12/arduino-lm35-sensor.html
[bookmark: _Toc326922939]Purpose
This section is a more advanced version based on Part 3. In this project, the maximum number of analog pins on the Arduino Uno to receive data from 6 thermometers and display the changes of temperature in one graph on the desktop.
[bookmark: _Toc326922940]Procedure
As the picture beneath shows, 6 LM35DZ thermometers are each connects to one of the 6 analog pins on the Arduino. Detailed assembly for the LM35DZ can be found in the previous project. Most modifications are made on the software. Clearly such arrangement has limited resource and the wiring is rather complicated. In the next project a more efficient resolution will be introduced.
[image: :moto_0263.jpg]
[bookmark: _Toc326922941]Parts List
Arduino Uno
Wires
Breadboard
LM35DZ X6

[bookmark: _Toc326922942]Sketch
Arduino
	float tempC; //declare variables
int numSensors=6;
int sensor = 0;
int sensors[]= {0,1,2,3,4,5};

void setup()
{
Serial.begin(9600); //opens serial port, sets data rate to 9600 bps
Serial.flush();
}

void loop()
{
tempC = analogRead(sensor); //read the value from the sensor
tempC = (5.0 * tempC * 100.0)/1024.0; //convert the analog data to temperature
Serial.print((byte)tempC); //send the data to the computer
sensor=(sensor+1)%numSensors;
delay(50); //wait one second before sending new data
}

Processing
	//import Serial communication library
import processing.serial.*;

//init variables
Serial commPort;
int numSensors=6;
int sensor=0;
float tempC;
float tempF;
int yDist;
PFont font12;
PFont font24;
PFont font8;
int bkgrd = 123;
int width=600;
int height=400;
boolean firstrun=true;
int firstcount=0;

//graph values
int sqrx=240;
int sqry=50;
int sqrLength=300;
float beginy;
float endy;
float[][] tempHistory = new float[numSensors+1][sqrLength];
int [][] trix=new int[9][3];

//scale values
int cMin=20;
int cMax=40;
int cNum=5;
int timeNum=10;
int timeMax=60;

//temp bar values
int barWidth=20;
int barLength=100;
int barSpace=30;
int startx=50;
int starty=20;

//palatte
color[] colors= {
 color(200, 200, 200), color(255, 36, 0), color(255, 246, 143),
 color(0, 238, 0), color(0, 245, 255), color(0, 0, 156),
 color(185, 211, 238), color(205, 127, 50), color(105, 89, 205),
};

void setup()
{
 //setup fonts for use throughout the application
 font12 = loadFont("Verdana-12.vlw");
 font24 = loadFont("Verdana-24.vlw");
 font8 = loadFont("Verdana-8.vlw");

 //set the size of the window
 size(width, height);

 //init serial communication port
 String output= Serial.list()[0];
 commPort = new Serial(this, output, 9600);

 //fill tempHistory with default temps
 for (int c=0; c<numSensors+1;c++)
 for (int index = 0; index<sqrLength; index++)
 tempHistory[c][index] =0;

 //triangle coordinates
 for (int r=0;r<3; r++)
 for (int c=0; c<3;c++) {
 trix[r*3+c][0]=startx+(c+1)*barWidth+c*barSpace+5;
 trix[r*3+c][1]=starty+(r+1)*barLength+r*barSpace;
 trix[r*3+c][2]=trix[r*3+c][1];
 }

 background(bkgrd);
 stroke (0);
 for (int i=0; i<3; i++) {
 for (int j=0;j<3;j++) {
 int x=startx+j*(barWidth+barSpace);
 int y=starty+i*(barSpace+barLength);

 //draw the temp rectangle
 rect(x, y, barWidth, barLength);

 //fade red and blue within the rectangle
 colorMode(RGB, barLength); //use color mode sized for fading
 for (int colorIndex = 0; colorIndex <= barLength; colorIndex++) {
 stroke(barLength - colorIndex, 0, colorIndex);
 line(x, colorIndex+y, x+20, colorIndex+y);
 }

 //color code the rectangles
 colorMode(RGB, 255); //reset color mode
 stroke (bkgrd);
 fill(colors[3*i+j]);
 rect(x, y-15, 20, 10);
 }
 }

 //write reference values
 fill(0, 0, 0);
 textFont(font12);
 textAlign(RIGHT);
 text(cMax+" C", startx-5, starty+5);
 text(cMin+" C", startx-5, starty+barLength+5);

 //scales &Title
 textFont(font24);
 text("J.Z:Multiple LM35DZs", sqrx+sqrLength/2+120, sqry-20);
 text("C", sqrx-15, sqry+sqrLength/2);
 text("Time(s)", sqrx+sqrLength/2+30, sqry+sqrLength+45);

 textFont(font8);
 textAlign(RIGHT, CENTER);
 for (int i=0;i<cNum+1;i++) {
 int stage=(cMax-cMin)/cNum;
 text(cMin+stage*i, sqrx-5, sqry+3+sqrLength/cNum*(cNum-i));
 }
 for (int i=0;i<timeNum+1;i++) {
 int step=sqrLength/timeNum;
 text(i*timeMax/timeNum, sqrx+5+i*step, sqry+sqrLength+15);
 }
}

void draw() {
 stroke(0);
 //get the temp from the serial port
 if (commPort.available() > 0) {
 tempC = commPort.read();

 //refresh the background to clear old data

 //draw graph
 noStroke();
 fill(255, 255, 255);
 rect(sqrx, sqry, sqrLength, sqrLength);
 smooth();
 strokeWeight(1.5);

 //first run
 if (firstrun) {
 tempHistory[sensor][firstcount]= tempC;
 if (sensor==numSensors-1)
 firstcount++;
 if (firstcount==sqrLength && sensor==numSensors-1)
 firstrun=false;
 }

 //after first run
 else for (int index = 0; index<sqrLength; index++) {
 if (index == sqrLength-1)
 tempHistory[sensor][index] = tempC;
 else
 tempHistory[sensor][index] = tempHistory[sensor][index + 1];
 }

 for (int c=0; c<firstcount;c++) {
 int total=0;
 for (int r=0; r<numSensors;r++)
 total+=tempHistory[r][c];
 tempHistory[numSensors][c]=total/numSensors;
 }
 //print
 for (int r=0;r<numSensors+1;r++) {
 stroke(colors[r]);
 if (r==numSensors) {
 stroke(color(0));
 strokeWeight(2);
 }
 for (int i=0;i<firstcount; i++) {
 if (i<sqrLength-1 && tempHistory[r][i+1]>0)
 line(sqrx + i, convert(tempHistory[r][i]), sqrx + i+1, convert(tempHistory[r][i+1]));
 }
 }
 strokeWeight(1);

 //draw triangle pointer & text
 fill(bkgrd);
 noStroke();
 for (int i=0; i<3;i++) {
 int x=72+i*50;
 rect(x, 0, 25, height);
 }
 rect(0.86*width, 0, 0.15*width, 0.11*height);

 trix[sensor][2] =trix[sensor][1]-int((tempC-cMin)/(cMax-cMin)*barLength);
 stroke(0);
 fill(0);

 for (int i=0; i<numSensors;i++)
 triangle(trix[i][0], trix[i][2], trix[i][0]+10, trix[i][2]-5, trix[i][0]+10, trix[i][2]+5);

 sensor= (sensor+1) % numSensors;

 fill(0, 0, 0);
 textFont(font24);
 textAlign(LEFT);
 if (firstcount!=0)
 text("A:"+str(tempHistory[numSensors][firstcount-1]), 0.86*width, 0.1*height);
 }
}

float convert(float temp) {
 float initial=sqry+sqrLength-(temp-cMin)/(cMax-cMin)*sqrLength;
 return max(min(initial, sqry+sqrLength), sqry);
}

[bookmark: _Toc326922943]Media
[image: :.Trash:temp:temp-2214.jpg]
Display Frame

[image: :moto_0264.jpg]
The thermometer panel
[bookmark: _Toc326922944]
Part 5. Multiple Sensors: Multiplexing
[bookmark: _Toc326922945]Purpose
During previous process, a problem is revealed: when the number of thermometers is increased, the Arduino eventually doesn’t contain enough ports for input reading. A multiplexer is used as a solution. It allows the Arduino to read values for multiple pins through one pin and matches the value to the correct port.

[bookmark: _Toc326922946]Procedure
[image: ttp://darcy.rsgc.on.ca/ACES/TEI3M/images/MuxBlockDiagram.gif]As the graph on the left states, the multiplexer used in this project has 20 pins available. 4 of them are connected to four digital pins on Arduino to address the port that is supposed to receives the value. One pin is connected to Analog0 to pass the actual value. And the rest of the pins are open to the thermometers (LM35DZ).

Since all the values are sent from the same Analog pin now, the code on Arduino needs to be adjusted to match the selection of sensors. The Processing code only works as a receiver, therefore can remain the same.

[bookmark: _Toc326922947]Sketch
Arduino:
	// multiplexing LM35DZ
//uses CMOS CD4067BE Analog Multiplezer
//JIASHI ZHU
//2011.12.21
float tempC;
int numSensors=6;
int sensor=0;
int sensorPin = A0;
int addressPins[]= {2,3,4,5};

void setup()
{
Serial.begin(9600); //opens serial port, sets data rate to 9600 bps
Serial.flush();
for (int i=0; i<4; i++)
 pinMode(addressPins[i],OUTPUT);

}

void loop()
{
selectNextSensor(sensor);
tempC = analogRead(sensorPin); //read the value from the sensor
tempC = (5.0 * tempC * 100.0)/1024.0; //convert the analog data to temperature
Serial.print((byte)tempC); //send the data to the computer
sensor=(sensor+1)%numSensors;
delay(50); //wait one second before sending new data
}

void selectNextSensor(int channel){
 for(int n=0; n<4; n++)
 digitalWrite(addressPins[n],bitRead(channel,n));

}

[bookmark: _Toc326922948]Media
	[image: :Desktop:photo 2.JPG]
Four pins connect to the digital pins on Arduino for addressing the right sensor;
One pin connects to Analog0 for value transporting.
Two wires connect to the 5V and ground for power supply.

	[image: :Desktop:photo 1.JPG]
6 pins are connected to the 6 thermometers. Readings are received in turns to match up the sensors setup in processing. The addressing information is controlled by a byte value passed through 4 pins.

[image: :.Trash:temp:temp-2214.jpg]
Display Frame
[bookmark: _Toc326922949]
5V/12V Breadboard-Compatible Regulator
[bookmark: _Toc326922950]Reference
http://darcy.rsgc.on.ca/ACES/TEI3M/Tasks/1112Tasks.html#5VRegulator
http://www.sparkfun.com/products/114 (similar projects)
www.fairchildsemi.com/ds/LM/LM7805.pdf

[bookmark: _Toc326922951]Purpose
Sometimes a power source needs to feed different devices which each requires certain voltage supply, for example, a Arduino and a cooling fan. This voltage regulator is a easy resolution for such situations by transferring the original power source into 2 streams: a fixed 5V stream and a original voltage stream (in this project that is 12V).
[bookmark: _Toc326922952]Parts List
LM7805 Voltage Regulator (major component)
DC Barrel Connector
10V 100uF capacitor
16V 10uF capacitor
220Ω resistor
650Ω resistor
2x6 header pins X2
2x6 female Pins X2
Copper board
[bookmark: _Toc326922953][image: :Desktop:Screen Shot 2012-02-01 at 12.34.20 AM.png]Procedure
The designing of the copper board is completed on EAGLE©.
[image: :Desktop:Screen Shot 2012-02-01 at 12.49.55 AM.png]Here is the brief digital layout of the board.

Noticeable Things:
1. In order to make this regulator breadboard compatible, the voltages circuits and the common ground are placed to fit a breadboard. Therefore, voltage (positive) is always on top of the ground (negative).
2. The blue print area is extra coverage of copper that remains on the board. This adjustment is to save the copper-consuming chemicals during the process of building wires.

After the board design is finished, the building process is pretty much straightforward: (Pictures in media section)
1. The circuit is printed on a small piece of Mimeograph paper.
2. Place the sheet over a copper board. When the board is heated up the oil print will come off to cover the copper.
3. Place the copper board in the chemicals tub. The oil saves the copper on the circuit traces from being removed.
4. Drilling, placing components, wiring and soldering.

Brief Explanation on the components

	DC Barrel Connector
	LM7805

	
[image: ttp://www.adafruit.com/images/medium/21mmdcjack_MED.jpg]
The voltage (positive) pin is the one at the end of the jack.
The other two pins are both ground for additional support. They are usually connected in a series to the common ground in the board designing.
	[image: ttp://www.seekic.com/uploadfile/ic-data/200916185259579.jpg]
A brief sketch of the LM7805. As the picture marked, the left leg is for voltage input, the right leg is for modified voltage output(5V), and the middle one connects to ground.

[bookmark: _Toc326922954]
Media
	[image: :Desktop:ss:IMG_0086.JPG]The copper board sheet. During the heating up process the oil doesn’t come off completely, which causes several breaks in the circuit. It’s later fixed by soldering patch.
	
[image: :Desktop:ss:IMG_0085.JPG]
Bread Board trial

	[image: :Desktop:ss:Screen Shot 2012-02-01 at 1.22.28 AM.png]
Front of the board
	[image:]
Back of the board. (lots of solder patches can be seen.)

	Video:
http://www.youtube.com/watch?v=zFlXWtezzSI&feature=g-upl&context=G227ac8cAUAAAAAAAAAA

[bookmark: _Toc326922955]
Part 6: Air Flow Management
[bookmark: _Toc326922956]Reference
Getting Started with Arduino p.70-71
http://darcy.rsgc.on.ca/ACES/TEI3M/Tasks/1112Tasks.html#Thermal6
http://darcy.rsgc.on.ca/ACES/TEI3M/Datasheets/IRF520.pdf
[bookmark: _Toc326922957]Purpose
The purpose of this project is to set up a fan station, which the strength of the airflow can be controlled by a LM35DZ thermometer. The voltage regulator will be used to supply different voltages to the Arduino and the fan at the same time.
[bookmark: _Toc326922958]Parts List
TA350DC Nidec fan
IRF520 MOSFET (TO-220)
5V/12V voltage regulator
LM35DZ thermometer
Arduino Uno
[bookmark: _Toc326922959]Procedure
Two new components are added in this project. Here is a brief description on each.
	TA350DC Nidec fan
	IRF520 MOSFET

	[image: :Desktop:nidecFan.jpg]
This CPU fan requires a 12V to function at normal rate, which is harmful for the Arduino(that’s what the voltage regulator is for).
3 wires are connected in the fan’s circuit.
Power, Tach Signal Wire, and Ground.
For now only the Power and Ground wires are used.
	[image: :Desktop:Untitled.png]
The MOSFET looks identical comparing to the LM7805 used for the regulator. However it has complete different function. The three pins are each called Gate, Drain, and Source.
Basically the MOSFET works as a switch. If a value is passed to the Gate pin, the Drain and Source are then connected. The amount of voltage allowed out of the total amount in the circuit at the connection is determined by the value to Gate pin.

The 5V/12V voltage regulator supplies 5V and 12V each to the Arduino and a breadboard.

The IRF520 is placed on the breadboard. The Gate pin is connected to pin9 on the Arduino Uno. The Arduino is programmed to send certain values(out of 255) to the Gate pin to control the voltage supplied to the fan. The Drain pin is connected to the ground wire of the fan and the Source pin is connected to the common ground. So when a value is passed, the MOFSET will ground the fan to finish the circuit and the fan will start functioning.

At side, the LM35DZ is connected to the common power and ground, and the middle pin is connected to analog0 on Arduino to pass the temperature value.

The Arduino is programmed to have a TempOFF and a TempON value. When the temperature hits the TempON, the fan is turned on and cools down the thermometer. And when the temperature drops down and hit the TempOFF value, the fan will be de-grounded and shut down. The temperature is mapped from the scale of [TempOFF, TempON] to a scale of [0,255] to control the voltage passed through the fan circuit, which will eventually control the fan’s functioning rate.
[bookmark: _Toc326922960]Sketch
	float tempC;
int sensor=0; //pin to read temperature value
int fanOFFTemp=25; // shut down the fan at this temperature
int fanONTemp=30; //turn on the fan at this temperature
int fanPin=9; //pin to control the voltage to the fan
double voltage;
int time=0;
int vprint;
int vmax=11.5; //voltage input(max)
void setup() {
 pinMode(9, OUTPUT);
 Serial.begin(9600);
 Serial.flush();
}

void loop() {
 tempC=analogRead(sensor); //take the temperature
 tempC=(int)((5.0 * tempC * 100.0)/1024.0); //convert to celsius
 voltage=min(max(tempC,fanOFFTemp),fanONTemp); //convert the temp into the scale of [fanOFF, fanON]
 voltage=(voltage-fanOFFTemp)/(fanONTemp-fanOFFTemp)*255; //calculate voltage value
 vprint=(int)(voltage*vmax/255);
 analogWrite(fanPin,voltage);
 display();
 time+=5;

 delay(5000);

}
void display() {
 Serial.print("Time:");
 Serial.print(time);
 Serial.print('\t');
 Serial.print("Temp:");
 Serial.print(tempC);
 Serial.print('\t');
 Serial.print("Event:");
 if(tempC>fanOFFTemp)
 Serial.print("ON");
 else
 Serial.print("OFF");
 Serial.print('\t');
 Serial.print("Supply:");
 Serial.print(vprint);
 Serial.println("V");
}

[bookmark: _Toc326922961]Media
	[image: :Desktop:IMG_0090.JPG]

	Circuit overview
(breadboard +fan+ Arduino + voltage regulator)

	[image: :Desktop:IMG_0091.JPG]
	Breadboard layout

	
Video: http://www.youtube.com/watch?v=5FXuwDk6vJk&feature=youtu.be

[bookmark: Thermal7][bookmark: _Toc326922962]Part 7. Fan Speed
[bookmark: _Toc326922963]Reference
http://darcy.rsgc.on.ca/ACES/TEI3M/Datasheets/ta350dc.pdf
http://darcy.rsgc.on.ca/ACES/TEI3M/Tasks/1112Tasks.html#Thermal7
http://arduino.cc/playground/Main/ReadingRPM
http://www.arduino.cc/en/Reference/AttachInterrupt
[bookmark: _Toc326922964]Purpose
Based on the previous achievements, the purpose of this project is to add the function to detect the speed of the fan’s rotation. This is doable with the Nidec DC Fan Tach Signal that comes with the fan (the yellow wire).
[bookmark: _Toc326922965]Parts List
TA350DC Nidec fan
IRF520 MOSFET (TO-220)
5V/12V voltage regulator
LM35DZ thermometer
Arduino Uno
[bookmark: _Toc326922966]Procedure
The code to detect and calculate the fan speed rate is modified based on the version provided here. The basic concept is the built-in attachInterrupt function provided by Arduino. As the picture below shows, when the fan is powered and spinning, [image: http://darcy.rsgc.on.ca/ACES/TEI3M/images/33tach.gif]through every two full rotations the Fan Tach Signal sends a voltage impulse (to whatever it is connected to).
And in this project, the signal wire is connected to the Interrupt Pin 0(the Pin 2 on the digital pins side) of the Arduino.
Every time the signal is sent, the number is recorded. When it reaches certain level (the max number is custom. The large it is, the more accuracy it will reveal), the Interrupt method basically calls the microchip to pause from its current tasks and determine the time it takes through the recording. Then by simple dividing, the fan speed can be calculated. After that the microchip goes back to the task it leaves before.

Notable things:
1) Because of the characteristics of Interrupt function, delay() method cannot be used in the project(when the Interrupt method calls it will cut in during the delaying and cause errors in the output). The replacement solution is to include the display() method in the Interrupt method. When a Interrupt signal is sent, the program will detach the Interrupt to prevent further interruption, calculate and display all the required values, and then reattach the Interrupt to start the next round.
2) When a voltage is applied, it doesn’t quite come as a clean ON/OFF signal, which is usually expected. Therefore, a debounce circuit is used to smooth out the multiple voltage changes. It can be simply archived by adding a LED (indicator) and a resistor to the circuit.
[bookmark: _Toc326922967]Sketch
	// Full Featured Fan Control System
// 1. LM35DZ Celsius Temperature Sensor on A0
// 2. IRF520 MOSFET on PWM Pin 9 for High Voltage Switching
// 3. Hardware Interrupt 0 on Pin 2 to monitor Fan Speed
// Taken from:
//http://arduino.cc/playground/Main/ReadingRPM
//---
int pinFAN = 9; // Control Voltage to Fan
int pinINTR = 2; // Int0 for fan speed
int rpmLimit = 100; //max number for recording of rotations
int maxFanRPM = 3100; //the maximum fan speed
int fanOFFTemp=25;
int fanFULLTemp=30;
float celsius;
int reading; //integer to hold the scaled temperature
int pwm; //mapped voltage depending on the temperature
volatile byte rpmcount;//rotations records, major Interrrupt signal
unsigned long rpm; //calculated fan speed
unsigned long timeold; //for time calculation

void setup(){
 Serial.begin(9600);
 pinMode(pinFAN,OUTPUT);
 pinMode(2,OUTPUT);
 digitalWrite(2,HIGH);
 analogReference(INTERNAL);
 attachInterrupt(0, rpm_fun, RISING); //attach Interrupt
 rpmcount = 0;
 timeold = millis(); //time record begins

}

void loop(){
 celsius = analogRead(0)* 100.0/1024.0;
 reading = min(max(fanOFFTemp,celsius),fanFULLTemp);
 pwm = map(reading,fanOFFTemp,fanFULLTemp,0,255);
 analogWrite(pinFAN,pwm); //temperature and voltage calculations
 if (rpmcount>=rpmLimit){
 detachInterrupt(0);
 display();
 timeold = millis();
 rpmcount = 0;
 attachInterrupt(0, rpm_fun, RISING); //when reaches the maximum rotations, work out the rpm
 }

}

void rpm_fun()
{
 rpmcount++;
}

void display(){
 Serial.print("Time:");
 Serial.print(millis()/1000);
 Serial.print("s \tTemp:");
 Serial.print(celsius);
 Serial.print("C\t Fan:");
 if (pwm>0)
 Serial.print(" ON");
 else
 Serial.print("OFF");
 Serial.print("\tVolts:");
 int volt = map(rpm,0,3100,0,12);
 Serial.print(volt);
 Serial.print(" \t RPM:");
 rpm=0.03*(millis() - timeold)*rpmcount;
 Serial.print(rpm);
}

[bookmark: _Toc326922968]Media
	[image: :Desktop:IMG_0092.JPG]

	The three wire that come out of the fan: voltage, ground and Nidec DC Fan Tach Signal. The signal wire is connected to a debouncing circuit, and then to the Interrupt Pin 0(Pin 2) on the Arduino.

	[image: :Desktop:IMG_0093.JPG]
	The complete layout of the breadboard. At the very left is the thermometer circuit, which connects to Analog pin0.
Then it’s the rpm Interrupt circuit to Interrupt Pin 0 (Pin 2).
And at the right side is the MOSFET voltage regulation circuit that controls the rate of the fan, which connects to Pin 9 on Arduino.

[image: :Desktop:Screen Shot 2012-02-26 at 9.48.32 PM.png]

From the output, despite the errors at beginning (because the output begins to show in the middle of data flows), the voltages and rpms basically match the temperature value.

Video: http://www.youtube.com/watch?v=U7HSs8LAw9k&feature=youtu.be
[bookmark: _Toc326922969]
Part 8. ATtiny85 Port
[bookmark: _Toc326922970]Reference
http://www.youtube.com/watch?v=30rPt802n1k&feature=related
http://hlt.media.mit.edu/?p=1229
http://darcy.rsgc.on.ca/ACES/TEI3M/Tasks/1112Tasks.html#Thermal8
[bookmark: _Toc326922971]Purpose
In order to apply the auto-fan system to the RSGC’s greenhouse, the Arduino Uno set must be replaced with a more lighter and efficient device. The solution is using the ATtiny85 to work as the microchip on the Arduino Uno. This requires access to upload code from the Arduino board to a separate chip. In this project, based on the software support from the high-low tech group, the ATtiny85 chip will determine the room temperature and apply certain voltage to the CPU fan.
[bookmark: _Toc326922972]Parts List
ATtiny85
TA350DC Nidec fan
IRF520 MOSFET (TO-220)
5V/12V voltage regulator
LM35DZ thermometer
Arduino Uno
[bookmark: _Toc326922973]Procedure
The first thing required is to setup the Arduino Uno as the station to modify other chips.
1. Go to Tools > Board, and select “Arduino Uno”, and upload the “ArduinoISP” sketch.

3. [image: :Desktop:Screen Shot 2012-03-24 at 7.04.38 PM.png]Download the support files for TItiny85, and copy them into the Arduino folder.
4. Go back to Tools > Board, and the ATtiny85 configurations should be present. Choose ATtiny85(w/ Arduino as ISP).

The software is all set for uploading code.

[image: :Desktop:attiny45_85pinout.png]
[image: :Desktop:Screen Shot 2012-03-27 at 11.19.55 PM.png]
Above is the pinout of ATtiny85. In order to upload code into the chip, the pins in the picture on the left must connect to the Uno:

	Arduino Uno
	ATtiny85

	10
	Reset

	11
	Pin 0(PWM)

	12
	Pin 1(PWM)

	13
	Pin 2(analog input 1)

Then connecting power and ground to ATtiny85 (either from Uno or separately), and the chip is fully ready to be programmed.
Notable Thing:
The supporting file provided seems to handle received data in a unique way. Therefore in the code the analogRead() value is modified based on repeated testing.

After the code is uploaded to ATtiny85, the connections have to be modified to fit into the fan project. Analog Pin 2(Pin 4 on pinout) is connected to the thermometer to receive temperature value; Pin 0 (PWM) is responsible to send digital value to the MOSFET to control the voltage supplied to the fan.

[bookmark: _Toc326922974]Sketches
	float tempC;
int sensor=2;
int fanPin=0;
int fanOFFTemp=20;
int fanONTemp=25;
double voltage;

void setup() {
 pinMode(fanPin, OUTPUT);
}

void loop() {
 tempC=analogRead(sensor)/4;
 voltage=min(max(tempC,fanOFFTemp),fanONTemp);
 voltage=map(voltage, fanOFFTemp, fanONTemp, 0, 255);
 analogWrite(fanPin,voltage);
}

[bookmark: _Toc326922975]Media
	[image: :Desktop:IMG_0099.JPG]

	Code uploading section
(Uno + ATtiny85)

	[image: :Desktop:IMG_0100.JPG]

	Thermal management fan project (w/ ATtiny85) overview

	[image: :Desktop:IMG_0101.JPG]

	Fan with power regulator circuit

	[image: :Desktop:IMG_0102.JPG]

	Attiny85 overview(code uploading station)

	DEMO video link: http://youtu.be/htt-9mzKjlo

[bookmark: _Toc326922976]
Project 6. The Tune Player
[bookmark: _Toc326922977]Reference
http://darcy.rsgc.on.ca/ACES/TEI3M/Tasks/1112Tasks.html#TunePlayer
http://www.phy.mtu.edu/~suits/NoteFreqCalcs.html
[bookmark: _Toc326922978]Purpose
This project is inspired by the Project 19: the Tune Player in 30 Arduino Projects for the Evil Genius. By using Arduino and a DAC made by combing several resistors to approximate a sine wave, this project can play a series of musical notes through a mini speaker. Based on the project provided, further improvements are made, such as more accurate notes, wider range of notes and addition of sharp notes.
[bookmark: _Toc326922979]Parts List
Arduino Uno
100uF non-polarized capacitor
100uF 16V electrolytic capacitor
10k 0.5W resistor x5
4.7k 0.5W resistor x3
1m 0.5W resistor
100k linear potentiometer
8 speaker
TDA7052 1W audio amplifier
[bookmark: _Toc326922980]Procedure
[image:]Sound is generated from waves. Sound can be generated from an Arduino by simply turning one of its pins on and off at certain frequency, which is rough and grating because it appears as a square wave. A better tone is performed when the wave is similar to the sine wave.

In order to produce a sine wave of change in frequency, a DAC (digital-to-analog converter) is used. As the schematic on the right shows, it is made by arranging resistors in such order. The red-highlight resistors in the parts list are the ones used to as DAC in this project.

By connecting the DAC to an audio amplifier, a series of rather natural tones can be generated with the right frequency provided. Based on the calculations done here, (http://mail.rsgc.on.ca/~azhu/MusicalNotes.slsx) and some modifications in testing, the values are settled and restored in the toneDurations matrix in sketches.
Notes are referred to with a 3- character-based system. The alphabet letter determines the note (A-G). If there is an # following then it’s the sharp of that note. The following number represents its position in the scale (out of 3 scales). High number means higher pitch. Then the last number represents its duration. The larger the number, shorter the note is. A sample note would be C#01. By putting several notes in a string, and reads the string note by note, a simple melody can be performed.
[bookmark: _Toc326922981]Sketches
	// Project 19 Tune Player
// Orginal Author: Simon Monk
// Tuning Improvements: K. McMillan
// Coding Modifications: Jiashi Zhu
//-------------------------------------
//Enhanced Encoding: Note/Octave/Duration
// Star Wars Cantina Theme Song
char* song = "A12D12A12D12A12D14A12*G04A12 A15G05A15G01F02F01D01 A12D12A12D12A12D14A12*G04A12 G02G01F03G02D13C14 *B14*A11 A12D12A12D12A12D14A12*G04A12 C14 C11A13G03F01 D01 D01 F01 A11 C11 D14C12*G04A14 F01 ";

//-------------------------------------
int DACPins[] = {2, 4, 7, 8};
int sin16[] = {
 7, 8, 10, 11, 12, 13, 14, 14, 15, 14, 14, 13, 12, 11,
 10, 8, 7, 6, 4, 3, 2, 1, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6};
long tempo = 12000;
int note;
int octave;
float duration;
// Three octave tone matrix
String scale = "A#BC#D#EF#G#";
int toneDurations [3][12]= { //12
{262, 253 ,235, 220, 208, 195, 180, 171, 159, 149, 140, 132},//12a
// A0 A#0 B0 C0 C#0 D0 D#0 E0 F0 F#0 G0 G#0
{120,114,108,100,94, 88, 82, 77, 70, 66, 61, 57},//12
//A1 A#1 B1 C1 C#1 D1 D#1 E1 F1 f#1 G1 G#1
{ 53,49,46,42,39,36,34,31,27,25,22, 19}};//12
//A2 A#2 B2 C2 C#2 D2 D#2 E2 F2 F#2 G2 G#2

// Song for a headache....
//char* song = " ";

void setup()
{
 Serial.begin(9600);
 for (int i = 0; i < 4; i++)
 {
 pinMode(DACPins[i], OUTPUT);
 }
}

void loop()
{

 int i = 0;
 int ch = song[0];
 while (ch != 0)
 {

 if (ch == ' ')
 {
 delay(75);
 }
 else {
 note = scale.indexOf(ch);
 i++;
 if (song[i] == '#')
 note++;
 i++;

 octave = song[i]-'0';
 i++;
 if (song[i]=='S')
 duration = 16;
 else if (song[i]=='0')
 duration = 0.5;
 else duration = song[i]-'0';

 Serial.print("Note: ");
 Serial.println(note);

 Serial.print("Octave: ");
 Serial.println(octave);
 Serial.print("Duration: ");
 Serial.println(duration);
 Serial.print("Tone Duration: ");
 Serial.println(toneDurations[octave][note]);
 Serial.println();
 playNote(toneDurations[octave][note]);

 }
 i++;
 ch = song[i];
 }
 delay(1000);
}

void setOutput(byte value)
{
 digitalWrite(DACPins[3], ((value & 8) > 0));
 digitalWrite(DACPins[2], ((value & 4) > 0));
 digitalWrite(DACPins[1], ((value & 2) > 0));
 digitalWrite(DACPins[0], ((value & 1) > 0));
}

void playNote(int pitchDelay)
{
 long numCycles = tempo/pitchDelay/duration;
 for (int c = 0; c < numCycles; c++)
 {
 for (int i = 0; i < 32; i++)
 {
 setOutput(sin16[i]);
 delayMicroseconds(pitchDelay);
 }
 }
}

[bookmark: _Toc326922982]Media
	[image: :Desktop:IMG_0114.JPG]

	Layout of the tune player project (schematic diagram)

	[image: :Desktop:IMG_0115.JPG]

	The Tune player project

	[image: :Desktop:Screen Shot 2012-05-16 at 1.00.11 AM.png]

	Schematic diagram of the DAC system using an R-2R ladder

	[image: :Desktop:IMG_0116.JPG]

	A close shot of the resistors.
All ten resistors combine to work as an DAC to perform different notes.

	[image: :Desktop:IMG_0117.JPG]
	A close shot at the Arduino. All the digital pins used are D2, D4, D7 and D8 as it shows on the picture.

	
Video Demo of playing Cantina Theme from Star Wars:
http://www.youtube.com/watch?v=UzH4SB9vD8Y&feature=youtu.be

[bookmark: _Toc326922983]
2012 Final Exam: Servo-Controlled Laser
[bookmark: _Toc326922984]Reference
http://darcy.rsgc.on.ca/ACES/TEI3M/Exams/2012TEI3MFinalExam.docx
[bookmark: _Toc326922985]Purpose
The purpose of this project is to build a Laser shooter with two servo motors to control the beam’s coordination. It’s done by sticking one servo motor vertically to the side of another horizontally placed servo motor. With the program sketches attached, the programmer is able to control the moving of the beam (with two scales of movement, large and small) and turn the beam on and of as they want.
[bookmark: _Toc326922986]Parts List
Arduino Uno
0.8mW red laser card
9g servo motor x2
270 resistor
Breadboard
Project case
[bookmark: _Toc326922987]Procedure
New Parts:

	Servo Motor
	Laser Card

	[image:]
The Servo Motor contains 3 wires.
The red wire is for voltage input.
(Operating Voltage: 4.8V~6.0V)
The black wire is for ground.
The white wire is the signal/control wire.
	[image:]
The Laser card has two wires: voltage and ground.
It is a light practical device working on a 3.1V and 0.8mW.

The assembly of this device is simple.
1. One servo motor is attached to a corner of the project case, with the reel part sticking out of the side of the case.
2. The second servo motor is attached to the reel side of the 1st motor horizontally. Make sure the reel of the 2nd motor is pointing upward.
3. Staple the laser card to the reel of the 2nd motor.

Wire Arrangement
1. The red and black wires of both servo motors go to the power(5V) and ground of the bread board.
2. White wire of the 1st (horizontal) motor goes to pin2 on the Arduino, to control the y value of the beam. The white wire of the 2nd (vertical) motor goes to pin3, for x value control.
3. Optional: Replace the laser card’s default wires with stronger and longer wires.
4. Connect the black wire of the laser card to ground. Connect the red wire to the 270 resistor, then leads the resistor to pin 4 of the Arduino. Then by changing the value passing to pin 4(0/1), the laser beam can be turned on and off.
[bookmark: _Toc326922988]Sketches
	#include <Servo.h>

int laserPin = 4;
Servo servoV;
Servo servoH;

int x = 90;
int y = 90;
int minX = 10;
int maxX = 170;
int minY = 50;
int maxY = 130;

void setup()
{
 servoH.attach(3);
 servoV.attach(2);
 pinMode(laserPin, OUTPUT);
 Serial.begin(9600);
}

void loop()
{
 char ch;
 if (Serial.available())
 {
 ch = Serial.read();
 if (ch == '0')
 {
 digitalWrite(laserPin, LOW);
 }
 else if (ch == '1')
 {
 digitalWrite(laserPin, HIGH);
 }
 else if (ch == '-')
 {
 delay(100);
 }
 else if (ch == 'c')
 {
 x = 90;
 y = 90;
 }
 else if (ch == 'l' || ch == 'r' || ch == 'u' || ch == 'd')
 {
 moveLaser(ch, 1);
 }
 else if (ch == 'L' || ch == 'R' || ch == 'U' || ch == 'D')
 {
 moveLaser(ch, 5);
 }
 }
 servoH.write(x);
 servoV.write(y);

}

void moveLaser(char dir, int amount)
{
 if ((dir == 'r' || dir == 'R') && x > minX)
 {
 x = x + amount;
 }
 else if ((dir == 'l' || dir == 'L') && x < maxX)
 {
 x = x - amount;
 }
 else if ((dir == 'u' || dir == 'U') && y < maxY)
 {
 y = y + amount;
 }
 else if ((dir == 'd' || dir == 'D') && x > minY)
 {
 y = y - amount;
 }
}

[bookmark: _Toc326922989]Media
	[image: :Desktop:IMG_0127.JPG]

	Overall Layout (Arduino +Bread Board + servo-laser unit (on a box)

	[image: :Desktop:IMG_0126.JPG]

	Servo-Controlled Laser unit
Two Servo unit combine together to control x & y values of the laser beam.

	[image: :Desktop:IMG_0131.JPG]

	Pins used on the Arduino.
5V and Ground for power
Pin2 for 1st servo (x value)
Pin3 for 2nd servo (y value)
Pin4 for laser Card (switch of the laser beam)

	[image: :Desktop:IMG_0129.JPG]
	Layout of the breadboard
Two pairs of yellow wires on the far side are power supply for the servos.
Three green wires in the middle are power control for the laser card. A 270 resistor is used to lower the voltage.

	
	

image58.jpeg

image59.png

image60.png

image61.png

image62.jpeg

image63.jpeg

image64.jpeg

image65.jpeg

image66.jpeg

image67.jpeg

image68.png

image69.wmf

R

1

=

(

1023

-

A

0

)

VR

1

A

0

image70.jpeg

image71.wmf

T

=

4100

ln

(

1023

-

A

0

)

VR

1

A

0

0

.

01066

æ

è

ç

ç

ç

ç

ö

ø

÷

÷

÷

÷

image72.png

image73.png

image74.png

image75.jpeg

image76.jpeg

image77.png

image78.png

image79.jpeg

image80.png

image81.jpeg

image82.jpeg

image83.jpeg

image84.gif

image85.jpeg

image86.jpeg

image87.png

image88.png

image89.jpeg

image90.jpeg

image91.jpeg

image92.jpeg

image93.png

image94.png

image95.jpeg

image96.png

image97.jpeg

image98.jpeg

image99.gif

image100.jpeg

image101.jpeg

image102.png

image103.png

image104.png

image105.png

image106.jpeg

image107.jpeg

image108.jpeg

image109.jpeg

image110.png

image111.jpeg

image112.jpeg

image113.png

image114.jpeg

image115.jpeg

image116.png

image117.png

image118.jpeg

image119.jpeg

image120.jpeg

image121.jpeg

image2.jpeg

image3.jpeg

image4.jpeg

image5.jpeg

image6.png

image7.jpeg

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image14.jpeg

image15.jpeg

image16.jpeg

image17.jpeg

image18.jpeg

image19.jpeg

image20.jpeg

image21.jpeg

image22.jpeg

image23.jpeg

image24.jpeg

image25.jpeg

image26.jpeg

image27.jpeg

image28.jpeg

image29.jpeg

image30.jpeg

image31.jpeg

image32.jpeg

image33.jpeg

image34.jpeg

image35.jpeg

image36.jpeg

image37.jpeg

image38.jpeg

image39.jpeg

image40.jpeg

image41.jpeg

image42.jpeg

image43.jpeg

image44.jpeg

image45.png

image1.jpeg

image46.jpeg

image47.jpeg

image48.jpeg

image49.jpeg

image50.jpeg

image51.jpeg

image52.jpeg

image53.png

image54.jpeg

image55.jpeg

image56.jpeg

image57.jpeg

