
AVR CPU Registers

Microcontrollers and AVR Specific Information

CPU Registers

- 1: General Purpose Registers
- 2: Status Register contains info about result of last executed instruction
- 3: Program Counter Address of next instruction

- 4: Instruction Register Holds fetched instruction
- 5: Stack Pointer Points to top of stack

Stack

- Used for storing temporary data
 - Local variables
 - Return addresses after interrupts or subroutine
- Implemented as growing from higher to lower address
 - Initial pointer set equal to last address of SRAM
- Push decreases SP
- Pop increases SP

SP ----

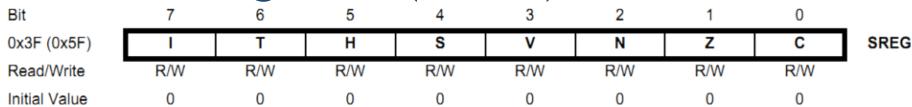
0x1FFD

0x1FFE

0x1FFF

Stack Pointer - SP

- Points to top of the stack
 - Implemented as two 8-bit registers
- What does address in SP tell us?


SP implementation in AVR

Bit	15	14	13	12	11	10	9	8	
0x3E (0x5E)	-	-	_	_	_	SP10	SP9	SP8	SPH
0x3D (0x5D)	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	SPL
	7	6	5	4	3	2	1	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

Status Register (SREG)

- Contains information about the result of the most recently executed instruction
 - Use to alter program flow on conditional operations
- NOT automatically stored when entering an interrupt routine
 - Must be handled by software

Status Register (SREG)

I: Global Interrupt Enable – Allows all interrupts

T: Bit Copy Storage – Used with BLD and BST for loading and storing bits from one register to another

H: Half Carry Flag – Indicates half-carry in some arithmetic

S: Sign flag – always XOR of V and N

V: Two's complement overflow flag

N: Negative Flag

Z: Zero Flag

C: Carry Flag – Indicates carry in arithmetic operation

Register File

- Most instructions have direct access to all registers
 - LD, MUL
- Some only operate on R16-R31
 - ANDI, CPI, SUBI, MULS
- A few operate only on R16:R23
 - Special multiply operations
- Double word operations operate on register pairs (R24-31)
- Most single-byte register or register+immediate operations are single cycle instructions

R0 0x00 R1 0x01 R2 0x02 0x0D R13 0x0D R14 0x0E R15 0x0F R16 0x10 R17 0x11 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register Low Byte R30 0x1E Z-register Low Byte R31 0x1F Z-register High Byte	7	0	Addr.	
R2	R0		0x00	
R13	R1		0x01	
R13 0x0D R14 0x0E R15 0x0F R16 0x10 R17 0x11 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register Low Byte R30 0x1E Z-register Low Byte	R2		0x02	
R14 0x0E R15 0x0F R16 0x10 R17 0x11 0x1A X-register Low Byte R26 0x1B X-register High Byte R27 0x1B X-register Low Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte				
R15 0x0F R16 0x10 R17 0x11 0x1A X-register Low Byte R26 0x1B X-register High Byte R27 0x1B X-register Low Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte	R13		0x0D	
R16 0x10 R17 0x11 0x1A X-register Low Byte R26 0x1B X-register High Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte	R14		0x0E	
R17 0x11 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte	R15		0x0F	
R26 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte	R16		0x10	
R26 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte	R17		0x11	
R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte				
R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte	R26		0x1A	X-register Low Byte
R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte	R27		0x1B	X-register High Byte
R30 0x1E Z-register Low Byte	R28		0x1C	Y-register Low Byte
,	R29		0x1D	Y-register High Byte
R31 0x1F Z-register High Byte	R30		0x1E	Z-register Low Byte
	R31		0x1F	Z-register High Byte

General

Purpose Working

Registers

Special Purpose Registers - X, Y, Z

- Registers R26-R31 have a special purpose
 - In addition to allowing general purpose usage
- 16-bit address pointers for addressing data space
- Used in functions for different addressing modes
 - Fixed displacement
 - Automatic increment/decrement

Figure 6-5.	Figure 6-5. The X-, Y-, and Z-registers						
	15	XH		XL	0		
X-register	7		0 7		0		
	R27 (0x1B)		R26 (0x1A)				
	15	ΥH		YL	0		
Y-register	7		0 7		0		
	R29 (0x1D)		R28 (0x1C)				
	15	ZH		ZL	0		
Z-register	7	0	7	0			
	R31 (0x1F)		R30 (0x1E)		_		