
R O Y A L  S T .  G E O R G E ’ S  C O L L E G E  

A D V A N C E D  C O M P U T E R  E N G I N E E R I N G  S C H O O L  

A V R  O P T I M I Z A T I O N  
H A R D W A R E ◆ S O F T W A R E ◆ D E S I G N ◆ M A T H E M A T I C S  

 

ACES IIIb takes our prospective engineers to the deepest accessible layer of the hardware 
architecture of the 8 bit AVR microcontroller family, specifically the ATmega328P and the 

ATtiny84. AVR’s Register Level and Assembly Language Programming are explored. 

 ACE: ________________________________________ 

 Course: ICS4U (ACES IIIb) 

 Year: 2022-2023 

 Instructor: C. D’Arcy 

 Photo: X. Chin’s, Giant RGBW LED Matrix, Spring 2022 

 Video: https://www.youtube.com/watch?v=KatHkq3PDNg  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE II AVR OPTIMIZATION: 2022-2023 RSGC ACES 

ATmega328P/Arduino Quick Reference 
 

 

https://www.arduino.cc/en/Main/ArduinoBoardUno 

 

 

  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

2022-2023 RSGC ACES PAGE III 

ATtiny84/DDB Quick Reference 
 

 

DDB v6 DDB v7 

  
 

  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE IV AVR OPTIMIZATION: 2022-2023 RSGC ACES 

Dolgin Development Board: Parts List and Encasement 

 

Live Parts Links: http://darcy.rsgc.on.ca/ACES/TEI4M/2021/DDPv6.html 

 

  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

2022-2023 RSGC ACES PAGE V 

Table of Contents 

ATMEGA328P/ARDUINO QUICK REFERENCE ........................................................................................................... I 

ATTINY84/DDB QUICK REFERENCE ........................................................................................................................ III  

DOLGIN DEVELOPMENT BOARD: PARTS LIST AND ENCASEMENT .......................................................................... IV 

RSGC ACES ATTINY84 BREADBOARD DEVELOPMENT PLATFORM ......................................................................... IX 

SELECTION OF RECENT ICS4U ISPS ......................................................................................................................... X 

0 INTRODUCTION ................................................................................................................................................... 1 

0.0 REGISTER-LEVEL (RLP) AND ASSEMBLY LANGUAGE (ALP) PROGRAMMING? ....................................................................... 1 
0.1 EMBEDDED SYSTEMS: ELIMINATING THE MIDDLE MAN.................................................................................................... 2 
0.2 DOLGIN DEVELOPMENT PLATFORM .............................................................................................................................. 3 
0.3 BIT CODING GYMNASTICS .......................................................................................................................................... 3 

0.3.0 Setting a Bit .................................................................................................................................................. 3  
0.3.1 Clearing a Bit ................................................................................................................................................ 3 
0.3.2 Inverting a Bit ............................................................................................................................................... 3  

1 AVR MEMORIES .................................................................................................................................................. 4 

1.0 FLASH PROGRAM FLASH (PROGMEM) .......................................................................................................................... 4 
1.1 STATIC RAM (SRAM) .............................................................................................................................................. 5 

1.1.0 32 Private General Purpose (GP) Registers (0x00-0x1F) .............................................................................. 5 
1.1.1 64 I/O Registers (0x20-0x5F) ........................................................................................................................ 6  

1.1.1.0 Digital I/O Registers (Ports) (PINx, DDRx, PORTx) ................................................................................................... 6 
1.1.1.0.0 ATmega328P Digital I/O Registers (Ports) ...................................................................................................... 6 
1.1.1.0.1 ATtiny84 I/O Registers (Ports) ........................................................................................................................ 6 
1.1.1.0.2 DDRx ............................................................................................................................................................... 7 
1.1.1.0.3 PORTx ............................................................................................................................................................. 7 
1.1.1.0.4 PINx ................................................................................................................................................................ 7 

1.1.1.2 Stack Pointer (SPH and SPL).................................................................................................................................... 8 
1.1.1.3 Status Register (SREG) ............................................................................................................................................ 8 

1.1.2 160 Extended I/O Registers (0x60-0xFF) .................................................................................................... 10 
1.1.3 SRAM (Heap and Stack) (0x??-RAMEND) ................................................................................................... 10 

1.1.3.0 Heap ..................................................................................................................................................................... 10 
1.1.3.1 (System) Stack ...................................................................................................................................................... 11 

1.2 EEPROM ............................................................................................................................................................. 11  
1.3 PREDEFINES (.H AND .INC) ........................................................................................................................................ 12 

2 INTERRUPTS ...................................................................................................................................................... 13 

2.0 INTERRUPT VECTOR TABLE (IVT) ............................................................................................................................... 13 
2.0.0 ATmega328P IVT ........................................................................................................................................ 13  
2.0.1 ATtiny84 IVT ............................................................................................................................................... 14  

2.1 AVOIDING CONFLICTS WITH THE IVT IN ASSEMBLY LANGUAGE ........................................................................................ 14 
2.1.0 Interrupt Priorities ...................................................................................................................................... 14 

2.2 RESET INTERRUPT ................................................................................................................................................... 15 
2.2.0 MCUSR (Reset) Register ............................................................................................................................. 15 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE VI AVR OPTIMIZATION: 2022-2023 RSGC ACES 

2.2.1 Rotary Encoder on RSGC ACES Breakout Board ......................................................................................... 15 
2.3 EXTERNAL INTERRUPTS ............................................................................................................................................ 16 

2.3.0 ATmega328P External Interrupt Registers ................................................................................................. 16 
2.3.1 ATtiny84 External Interrupt Registers ........................................................................................................ 16 

2.4 PIN CHANGE INTERRUPTS ......................................................................................................................................... 17 
2.4.0 ATmega328P Pin Change Interrupt Control Register ................................................................................. 17 
2.4.1 ATtiny84 General Interrupt Mask Register ................................................................................................ 17 
2.4.2 ATtiny84 Pin Change Mask Registers ......................................................................................................... 17 

3 TIMER/COUNTERS ............................................................................................................................................ 18 

3.0 ATMEGA328P ...................................................................................................................................................... 18 
3.0.0 ATmega328P Timer/Counter0 Modes ........................................................................................................ 18 
3.0.1 ATmega328P Timer/Counter1 Modes ........................................................................................................ 19 
3.0.2 ATmega328P Timer/Counter2 Modes ........................................................................................................ 19 
3.0.3 ATmega328P Pulse Width Modulation (PWM) with AnalogWrite() .......................................................... 20 

3.0.3.0 Scope Trace of an AnalogWrite() PWM Waveform .............................................................................................. 20 
3.0.4 Atmega328P Timer/Counter1 Registers .................................................................................................... 21 
3.0.5 Atmega328P Timer/Counter 1 Normal Mode 0 ......................................................................................... 22 

3.1 ATTINY84 ............................................................................................................................................................. 23  
3.1.0 ATtiny84 Timer/Counter0 Modes ............................................................................................................... 23 
3.1.1 ATtiny84 Timer/Counter1 Modes ............................................................................................................... 24 
3.1.2 ATtiny84 Pulse Width Modulation (PWM) with AnalogWrite() ................................................................. 24 
3.1.3 ATtiny84 Timer/Counter Registers ............................................................................................................. 25 

3.2 ATTINY85 TIMER APPLICATION: FUNCTION GENERATOR................................................................................................ 25 
3.3 ACCESSING 16-BIT REGISTERS .................................................................................................................................. 26 

4 ADC: ANALOG TO DIGITAL CONVERSION .......................................................................................................... 27 

4.0 ANALOG COMPARATOR ........................................................................................................................................... 27 
4.1 DAC: DIGITAL TO ANALOG CONVERSION (DAC) .......................................................................................................... 28 
4.2 SUCCESSIVE APPROXIMATION ................................................................................................................................... 28 

5 PREPARATIONS FOR AVR ASSEMBLY LANGUAGE PROGRAMMING (AALP)........................................................ 29 

5.0 DEVELOPMENT PREPARATIONS.................................................................................................................................. 30 
5.0.0 Hardware: Atmel/Microchip AVR Microcontrollers ................................................................................... 30 

5.0.0.0 Peripheral Integration .......................................................................................................................................... 30 
5.0.1 Software Development Tools ..................................................................................................................... 31 

5.0.1.0 Integrated Development Environment: Atmel Studio 7 ....................................................................................... 31 
5.0.1.1 Operating System: Windows 10 ........................................................................................................................... 32 
5.0.1.2 Programmer: Atmel ICE ........................................................................................................................................ 35 

5.1 MICROCHIP’S ONLINE REFERENCE ............................................................................................................................. 35 
5.2 NEW ATMEL STUDIO PROJECT .................................................................................................................................. 36 
5.3 YOUR FIRST PROJECT: BLINK ..................................................................................................................................... 37 

5.3.0 Simulator .................................................................................................................................................... 37 
5.3.1 Hardware ................................................................................................................................................... 37  
5.3.2 Software ..................................................................................................................................................... 38 

5.3.2.0 Source Code Appearance ..................................................................................................................................... 38 
5.3.2.1 Assembly Source Code ......................................................................................................................................... 38 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

2022-2023 RSGC ACES PAGE VII 

5.3.3 Debugging Blink.asm ................................................................................................................................. 39 
1.3.3.0 Stepping and Breakpoints..................................................................................................................................... 39 

5.4 ATMEGA328P FEATURES ........................................................................................................................................ 40 
5.5 PERIPHERALS ......................................................................................................................................................... 41 
5.6 AVR CENTRAL PROCESSING UNIT (CPU) .................................................................................................................... 41 
5.7 PACKAGE TYPES ..................................................................................................................................................... 43 

5.7.0 Digikey: Ordering ....................................................................................................................................... 43 
5.7.1 Digikey: SchemeIt ....................................................................................................................................... 44  

5.8 INTERESTING EXERCISES ........................................................................................................................................... 45 
5.8.0 Delay Calculator ......................................................................................................................................... 45 
5.8.1 Traffic Light ................................................................................................................................................ 45  
5.8.2 RGB LED...................................................................................................................................................... 45  
5.8.3 Questions ................................................................................................................................................... 45  

5.9 JUST BEFORE WE START: C ...................................................................................................................................... 46 

6 AALP: AVR ASSEMBLY LANGUAGE PROGRAMMING ......................................................................................... 47 

6.1 ASSEMBLY CODE ORGANIZATION ............................................................................................................................... 47 
6.2 REUSABLE BUILDING BLOCKS .................................................................................................................................... 48 
6.3 BASIC INSTRUCTIONS BY FUNCTION ............................................................................................................................ 49 

6.3.0 Register Setting .......................................................................................................................................... 49 
6.3.1 Copying ...................................................................................................................................................... 49  
6.3.2 Adding ........................................................................................................................................................ 49  
6.3.3 Subtracting ................................................................................................................................................. 50  
6.3.4 Shift & Rotate ............................................................................................................................................. 50  
6.3.5 Binary ......................................................................................................................................................... 51  
6.3.6 Bit Manipulation ........................................................................................................................................ 51  
6.3.7 Compare ..................................................................................................................................................... 51  
6.3.8 Jump: Unconditional .................................................................................................................................. 51  
6.3.9 Skip: Conditional ........................................................................................................................................ 51  
6.3.10 Branch Instructions .................................................................................................................................. 52  

6.4 SIGNED REPRESENTATION OF NUMBERS ...................................................................................................................... 53 
6.4.0 Two’s Complement ..................................................................................................................................... 53 

6.5 EXPRESSIONS ......................................................................................................................................................... 54 
6.5.0 Operators ................................................................................................................................................... 54 
6.5.1 Expression Separation Functions ................................................................................................................ 55 

6.6 VARIABLES ............................................................................................................................................................ 56 
6.6.0 Variable Use in SRAM ................................................................................................................................. 56  
6.6.1 Variable Use in Program Flash and EEPROM ............................................................................................. 56 

6.6.1.0 .DB ........................................................................................................................................................................ 57 
6.6.1.1 .DW ....................................................................................................................................................................... 57 
6.6.1.2 .DD ........................................................................................................................................................................ 57 
6.6.1.3 .DQ........................................................................................................................................................................ 57 
6.6.1.4 Example: Variable in Flash .................................................................................................................................... 58 

6.6.1.4.0 Questions ...................................................................................................................................................... 58 
6.7 ARRAYS ................................................................................................................................................................ 59  

6.7.0 C Array Example ......................................................................................................................................... 59  
6.7.0.0 Comments and Observations from C Array Example ........................................................................................... 59 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE VIII AVR OPTIMIZATION: 2022-2023 RSGC ACES 

6.7.1 Data Indirect Addressing Modes ................................................................................................................ 60 
6.7.2 Assembly Example ...................................................................................................................................... 61 

2.7.2.0 Comments and Observations from Assembly Array Example .............................................................................. 61 
6.8 IF…THEN…ELSE ...................................................................................................................................................... 62 
6.9 LOOP ................................................................................................................................................................... 63 

6.9.0 for Loop ...................................................................................................................................................... 63  

7 AALP: ARITHMETIC AND MATHEMATICS ........................................................................................................... 64 

7.0 TERMINOLOGY: OVERFLOW AND UNDERFLOW ............................................................................................................. 64 
7.1 ADDING OR SUBTRACTING ONE FROM A REGISTER ........................................................................................................ 65 
7.2 MULTIPLYING AND DIVIDING A SINGLE BYTE BY A POWER OF 2........................................................................................ 65 

7.2.0 Multiplying a Single Byte by a Power of 2 .................................................................................................. 65 
7.2.1 Dividing Two-Byte (Word) Dividend by a Power of 2 ................................................................................. 66 

7.3 BYTE ARITHMETIC ................................................................................................................................................... 67 
7.3.0 Byte Addition with Overflow (Carry Flag) .................................................................................................. 67 
7.3.1 Byte Subtraction with Underflow (Carry Flag) ........................................................................................... 67 
7.3.2 Unsigned Byte Multiplication with the MUL Instruction ............................................................................ 68 
7.3.3 Signed Byte Multiplication with the MULS Instruction............................................................................... 68 
7.3.4 Byte Division ............................................................................................................................................... 68  

7.4 ARITHMETIC WITH MULTI-BYTE OPERANDS ................................................................................................................. 69 
7.4.0 Two Dedicated Word Instructions: ADIW and SBIW .................................................................................. 69 
3.4.1 Preparing Multi-Byte Operands ................................................................................................................. 70 

3.4.1.0 Applicable Byte Functions .................................................................................................................................... 70 
3.4.2 Adding Two Words ..................................................................................................................................... 70 
3.4.3 Subtracting Two Double Words ................................................................................................................. 71 
3.4.4 Multiplying two Words with the MUL Instruction ...................................................................................... 72 

8 AALP: AVR ASSEMBLY LANGUAGE PROGRAMMING WITHIN THE ARDUINO IDE ............................................... 73 

8.0 INLINE ASSEMBLY ................................................................................................................................................... 73 
8.0.0 Blink ........................................................................................................................................................... 73  
8.0.1 Blink Without Delay ................................................................................................................................... 74  

8.1 PURE ASSEMBLY ..................................................................................................................................................... 76 
8.1.0 Blink ........................................................................................................................................................... 76  

APPENDICES......................................................................................................................................................... 77 

A DEVELOPMENT ENVIRONMENTS ...................................................................................................................... 77 

A.0 INTEGRATED .......................................................................................................................................................... 77 
A.0.0 Arduino IDE ................................................................................................................................................ 77  
A.0.1 ATMEL Studio 7 (Windows) ........................................................................................................................ 78 
A.0.2 Crosspack (Mac)......................................................................................................................................... 78 
A.0.3 Atom and PlatformIO (Cross-Platform) ..................................................................................................... 78 
A.0.4 WinAVR (Windows) .................................................................................................................................... 78 
A.0.5 AVR-Eclipse ................................................................................................................................................ 78 

A.1 STANDALONE ........................................................................................................................................................ 79 
A.1.0 TextMate (Mac) ......................................................................................................................................... 79  
A.1.1 Notepad++(Windows) ................................................................................................................................ 79 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

2022-2023 RSGC ACES PAGE IX 

A.1.2 Programmers Notepad (Windows) ............................................................................................................ 79 

B SOFTWARE: GNU TOOLCHAIN ........................................................................................................................... 80 

B.0 GCC .................................................................................................................................................................... 80  
B.1 GNU BINUTILS ...................................................................................................................................................... 80 

B.1.0 avr-as ......................................................................................................................................................... 81  
B.1.1 avr-ld .......................................................................................................................................................... 81  

B.2 AVR-LIBC ............................................................................................................................................................... 81 
B.3 BUILDING SOFTWARE .............................................................................................................................................. 81 
B.4 AVRDUDE ........................................................................................................................................................... 81  

C AVR ASSEMBLY REFERENCE .............................................................................................................................. 82 

C.0 STATUS REGISTER (FLAGS), REGISTER AND INSTRUCTION OPERANDS ................................................................................ 82 
C.1 PROGRAM AND ADDRESSING MODES ......................................................................................................................... 82 
C.2 REGISTER (GP, I/O & EXTENDED I/O) SUMMARY ........................................................................................................ 82 
C.3 FREQUENTLY USED AVR-AS DIRECTIVES ..................................................................................................................... 82 
C.4 INTERRUPT VECTOR TABLE ....................................................................................................................................... 82 
C.5 INSTRUCTION SET ................................................................................................................................................... 83 

C.5.0 Summary of Instructions ............................................................................................................................ 83 
C.5.1 Detailed Instruction Set .............................................................................................................................. 83 

 

RSGC ACES ATtiny84 Breadboard Development Platform 

 

  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE X AVR OPTIMIZATION: 2022-2023 RSGC ACES 

Selection of Recent ICS4U ISPs 
Seb Atkinson: Dolgin/Atkinson Dev Board v8 Jackon Shibley: Rocket Guidance System 

https://www.youtube.com/watch?v=SYQoG84IRUQ https://www.youtube.com/watch?v=Jd08QXdUqzw 

  

Adam Goldman: Smart Soap Dispenser Jasper Schaffer: Rubik’s Cube Solver 
https://www.youtube.com/watch?v=3JjT-ef_25w https://www.youtube.com/watch?v=hqTbJypHeqQ 

  

Ethan McAuliffe: Photophone Ethan Peterson: Flex Equalizer 
https://www.youtube.com/watch?v=s8sXL5Ja8Gs http://portfolio.petetech.net/flex-equalizer/ 

 

 



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 1 

0 Introduction 
Our second course within the ACES program, ICS3U, focuses largely on an introduction to various 
interfacing techniques and devices under monitoring and control of an AVR microcontroller. On the 
hardware side, the Arduino UNO offers beginners easy access to the ports and peripherals of the 
ATmega328P. On the software side, the Arduino IDE offered programmers an enhanced subset of 
ANSI C which can reasonably be referred to as Arduino C. Your own code, coupled with open 
source, off-the-shelf component libraries, formed the basis of your programs or sketches as they’re 
referred to.  

Our third course, ICS4U, takes engineering-minded Georgians behind the curtain, down to the lower 
levels of hardware and software concepts where the efficiencies and optimization of embedded 
systems are best achieved. To support your studies in this course you may wish to take a quick scan 
of the video tutorial offerings Vegard Wollan, co-inventor of AVR, provides on his YouTube Channel, 

https://www.youtube.com/playlist?list=PLtQdQmNK_0DQgr3A3C6AEHp6DggewClmM 

0.0 Register-Level (RLP) and Assembly Language (ALP) Programming? 
My preferred reasons for introducing you to this curriculum are that it elevates you to an 
unparalleled level of embedded software competency. There’s (almost) nothing between you and 
the CPU that is executing your code and, finally, this knowledge will give you a head start on your 
university courses and advantage in your internship interviews. 

Here’s the justification in a frame from an informative online slide show. 

 

https://www.slideshare.net/rsamurti/l10-assemblylanguageprogrammingofatmega328-p 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 2 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

0.1 Embedded Systems: Eliminating the Middle Man 
Like most things in life, coding involves tradeoffs. The 
high-level C, Java, or Python programmers get to express 
themselves in an English-like language with little to no 
regard for the underlying hardware that the code will be 
executed on.  This mindset ranges anywhere from a 
missed opportunity to an outright problem for the 
Embedded Systems engineer.  

Consider the ubiquitous Blink sketch in C that high-
level coders are quite familiar with. 

 

 

rsgcaces > AVROptimization >  CBlink.c 

Now, here’s a low-level assembly language view of the same Blink sketch that is actually flashed 
into your MCU, 

 

This Disassembler view is available within your new IDE, Atmel Studio, while engaging a 
debugging session (Debug > Window > Disassembler) 

As can be seen, the compiler translates each high-level statement into one or more assembly 
language instructions. Generic comments are even added for your convenience. 

The opportunity for the embedded systems programmer is to make this even more efficient. 

Teaching you how to code in assembly language is one of the goals of this final ACES course. In 
doing so, we eliminate the compiler and all the assumptions it makes about your high-level 
intentions to ensure what is flashed into your MCU is the most efficient code achievable.  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 3 

0.2 Dolgin Development Platform 

 

0.3 Bit Coding Gymnastics 
One difference between a painter and an artist may very well be the size of the brush. So, too, does 
the beginning coder use the broad coding strokes that may accomplish the intended task but often 
results in collateral damage (aka side effects) and performance inefficiency. Setting, clearing or 
inverting a single, or group of, bits is an example of the fine brush strokes the register-level or 
assembly-level programmer is frequently required to do. Use of the bitwise operators (not-~, and-
&, or-|, and xor-^) are brought to bear.  Register-level examples of these tasks appear below. 

0.3.0 Setting a Bit 
Setting a bit means making it 1. The example below is a register-level improvement on 
pinMode(13, OUTPUT); for the ATmega328P, 

 PORTB |= 1<<PB5; 

0.3.1 Clearing a Bit 
Clearing a bit means making it 0. The example below is a register-level improvement on 
digitalWrite(7, LOW); for the ATmega328P, 

 PORTD &= ~(1<<PD7); 

0.3.2 Inverting a Bit 
Inverting (aka complementing) a bit means switching it from 0 to 1 or vice versa. The example 
below is a register-level approach to inverting the I/O state of digital pin 13 for the ATmega328P, 

 PORTB ^= 1<<PB5;  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 4 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

1 AVR Memories 
The AVR family of microcontrollers uses a modified 
Harvard Architecture (instructions and data in 
separate areas) which uses 3 types of memory: 
Flash, SRAM and onboard EEPROM. 

 

 

 

 

1.0 Flash Program Flash (ProgMem) 
Flash is non-volatile memory, which means it persists when power is removed. Its purpose is to 
hold instructions that the microcontroller executes. The amount of flash can range from 512 bytes 
on an ATtiny to 384K on an ATxmega384A1.  

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 5 

1.1 Static RAM (SRAM) 
SRAM (Data Memory) is volatile memory that stores the runtime state of the program being 
executed. The amount of RAM can range from 32 bytes on an ATtiny28L to 32KB on an 
ATxmega384A1. In many AVR microcontrollers RAM is split into 4 subsections: General Purpose 
Registers, General Purpose I/O Registers, Extended I/O Registers, and Internal RAM. AVR 
microcontrollers have RAM on-chip but some AVRs (e.g. ATmega128) can use external RAM 
modules.  

Ahead. Given there is considerably more space available in Flash Program Memory that either SRAM 
or EEPROM, C allows programmers to place data in the former when the latter is full. Certain steps 
must be undertaken to do so but it is easily doable. We’ll discuss this technique later in the course. 

ATmega328P 

ATtiny84 

 

1.1.0 32 Private General Purpose (GP) Registers (0x00-0x1F) 
The lowest 32 bytes of the AVR SRAM (0x00-0x1F) are mapped to the CPU for its efficient 
manipulation of data in support of assembly language instructions. These are referred to as the 
MCU’s private, general purpose registers and are consistent throughout the mega and tiny families. 
As far as I know these locations are inaccessible to the register-level programmer. 

 
  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 6 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

1.1.1 64 I/O Registers (0x20-0x5F) 
Located above the GP Registers, within the AVR’s SRAM, lies a block of 64 bytes (0x20-0x5F) 
referred to as the I/O Register Space. The digital I/O Registers (aka Ports) are mapped to this area 
and, understandably, vary within the MCU families depending on their offerings. There are some 
consistencies maintained for compatibility.  

1.1.1.0 Digital I/O Registers (Ports) (PINx, DDRx, PORTx) 
IO Ports are the most common vehicle for your AVR to interface with real world. Each of the 328P 
and 84 digital pin numbers your code referenced in ICS3U are available for your review in the Quick 
Reference Guides inside the front cover of this workbook. Control over each digital pin number is 
accomplished through bit manipulation within three registers as shown below. 

1.1.1.0.0 ATmega328P Digital I/O Registers (Ports) 
A subset of the digital I/O addresses for the ATmega328P appears below. 

http://mail.rsgc.on.ca/~cdarcy/Datasheets/RegisterSummary.pdf 

 

1.1.1.0.1 ATtiny84 I/O Registers (Ports) 
A subset of the I/O addresses for the ATtiny84 appears below.  

http://mail.rsgc.on.ca/~cdarcy/Datasheets/ATtiny84Registers.pdf 

 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 7 

Each Port has dedicated set of 3 registers mapped to it that are manipulated by your code to control 
the flow of data between the AVR and its external circuitry. The registers (aka ports) are the Data 
Direction Register (DDRx), and Output Register (PORTx) and Input Register (PINx), where x is 
replaced with an MCU-specific uppercase letter. 

 

By virtue of its 8-bit width, each Port can govern to eight pins on the AVR. For example, the 8-bit 
register PORTD, on the ATmega328P is responsible for managing the behaviour of pins PD0 through 
PD7. One bit in each of the three PORTD registers is dedicated to each pin. A quick glance at the 
pinout diagram of the ATmega328P a few pages later reveals that PD0 is actually pin 2 on the chip. 
This pin maps to digital pin 0 on the Arduino UNO. A second look at the pinout diagram reveals 
other interesting details. There is no PORTA on this chip and PORTC only has seven active pins (PC0-
PC6). All of these details can be reviewing the snapshot of the Register Summary on presented 
earlier on page 5. 

Many of the high-level Arduino C instructions you used last year manipulate the bits in these ports 
in some way. For example, the pinMode(pin, mode)instruction, first determined the PORT pin 
that as mapped to the Arduino pin you were attempting to manipulate before clearing (INPUT) or 
setting (OUTPUT) the corresponding bit in the PORTs DDR register.  

PORT High-Level Arduino C Register Level 
DDRx pinMode(13,OUTPUT); DDRB |= 1<<5; 

PORTx digitalWrite(13, LOW); PORTB &= 1<<5; 
PINx uint8_t res = digitalRead(13); uint8_t res = PINB &(1<<5)?1:0; 

1.1.1.0.2 DDRx 
The value of the bits within a Data Direction Register defines the I/O direction of the corresponding 
digital pin: 0 for Input, 1 for Output. This helps explain why Input is the default.  

1.1.1.0.3 PORTx 
The bits within a Port’s Output Register define the voltage level for the corresponding digital pin: 0 
for 0V, 1 for 5V. 

1.1.1.0.4 PINx 
The bits within a Port’s Input Register define the voltage level read that appears on corresponding 
digital pin: 0 for 0V, 1 for 5V.  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 8 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

1.1.1.2 Stack Pointer (SPH and SPL) 
The Stack is a (LIFO) data structure of significance that will 
be discussed thoroughly. Similar to the SREG, its use is 
essential for the correct execution of code. Not surprisingly 
then, the addresses of this two-byte register is tucked just 
under the SREG address. Again from the images above, the 
addresses are consistent between the 328P and 84. The 
Stack is an area of SRAM that expands and shrinks 
dynamically during execution. The Stack Pointer (SP) 
always holds the address of the top of the Stack. Initially, it 
is positioned at the highest address of available SRAM and 
grows ‘backwards’ in the sense that as data or addresses are added to the Stack (pushed), the 
contents of the Stack Pointer, decreases. As data or addresses are removed from the Stack 
(popped), the contents of the Stack Pointer, increases. 

An implication of the Stack’s characteristics is the number of bits that must be reserved for the 
Stack Pointer.  From the images above it is 10 for the 328P and 9 for the 84. The Stack Pointer then 
consists of two sub-registers, Stack Pointer High (SPH) and Stack Pointer Low (SPL). 

1.1.1.3 Status Register (SREG) 
Each of the hundred-plus AVR assembly language instructions has the ability to reflect the result of 
the operation through the setting of a set of 8 bits, referred to as flags. These flags are bundled 
together in a register known as the Status Register or SREG. So critical to the correct execution of 
code is the SREG that it is given a prominent address in SRAM at the top (0x5F). This address is 
consistent between the ATmega328P and ATtiny84 MCUs.  

 

 

 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 9 

When an assembly language instruction completes execution, the results are reflected in the Status 
Register (SREG). Conditions that can be examined and registered include whether the result of a 
calculation was negative (N), or whether the result of an arithmetic operation overflowed the 8 bit 
destination register (V) In total, there are 8 ‘flags’ that can potentially be affected. The manner in 
which the flags are affected is detailed for each instruction in the AVR Instruction Manual (a link 
appears at the top of our course page). The second-to-last column in the Instruction Set Summary 
indicates which flags are affected by each instruction, but not how. 

Flag Description 

I Global Interrupt Enable/Disable Flag 

T Transfer bit used by BLD and BST instructions 

H Half Carry Flag 

S N V, For signed tests 

V Two’s complement overflow indicator 

N Negative Flag 

Z Zero Flag 

C Carry Flag 

 
The purpose of leaving flags in certain state is so that next instruction can take appropriate action 
based on the result of its previous instruction. This is particularly true of the branching 
instructions. 

 

http://mail.rsgc.on.ca/~cdarcy/Datasheets/InstructionSetSummary.pdf 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 10 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

1.1.2 160 Extended I/O Registers (0x60-0xFF) 
To accommodate the broader capabilities in the ATmega family over the ATtiny family, an 
additional 160 bytes of SRAM are set aside in the mega family for the extended I/O register set. This 
might seem like an unusual number, but when taken together with the previous address ranges, the 
total amounts to a familiar 256 bytes of reserved SRAM (32+64+160=256).  

 

Consult Chapter 36, Register Summary, of the ATmega328P datasheet to see the specific details of 
address mapping.  

1.1.3 SRAM (Heap and Stack) (0x??-RAMEND) 
With the lowest SRAM addresses (varies between families) 
set aside for dedicated Register use as described above, the 
remaining space is free for use by your code to influence 
and exploit dynamically. The amount of free space 
remaining depends on your MCU. The highest address can 
be determined programmatically by accessing a predefined 
constant typically included in the toolchain as RAMEND. 

Although your code is free to use the entire range of SRAM 
between the end of the Extended Register section and 
RAMEND, there are additional transparent code 
behaviours you must be aware to ensure correct code performance. The concepts are generally 
referred to as the heap and the system stack. 

1.1.3.0 Heap 
The heap is the preferred area of SRAM that the assembler looks to, to satisfy the bytes of storage 
required by your global variable declarations (dynamic memory allocation is beyond the scope of 
this course). Generally, the byte range of the heap extends from just above the Extended Register 
set and continues as required. 

Should your code attempt to declare an array of bytes required storage that exceeded the .variables 
that you declare are stored here, as are parameters passed to functions and local variables declared 
within them. 



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 11 

1.1.3.1 (System) Stack 
 

 

 

1.2 EEPROM 
EEPROM (Electronically Erasable Programmable Read Only Memory) is non-volatile memory which 
is used to store data. The most common use is to store configurable parameters. The amount of 
EEPROM can range from 32 bytes on an ATtiny to 4KB on an XMega.  

EEPROM is a good place to log data from sensors, store values as a Lookup Table (LuT) for faster 
performance by avoiding computationally-intense calculations (trig values), or data such as font 
maps, to name a couple of common uses. 

.Reference: http://www.protostack.com/blog/2010/12/avr-memory-architecture/ 

 

  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 12 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

1.3 Predefines (.h and .inc) 
The specific register names and corresponding 
addresses are available for use in your register-level 
Arduino C programs in the form of a header file 
(.h).  Selecting the target board within the Arduino 
IDE results in the correct files of predefines being 
included in the toolchain, automatically. The files of 
predefines are iom328p.h and iotnx4.h for the 
UNO and DDB, respectively.  You can explore the 
contents of these files by following the links at the 
top of our course page.  

 

When programming in Assembly Language within 
Atmel Studio 7, the appropriate file of predefines 
(.inc) are made known to your project when you 
select the target board in the project creation 
dialog sequence. 

 

 

Once you complete a successful build of your 
assembly language project the predefine include 
file (.inc) will appear in the Dependencies section. 
Click to open to examine its contents. 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 13 

2 Interrupts 
MCUs are designed with the ability to immediately stop executing some code and address a service 
alert from a secondary source (e.g. sensor, timer, button, etc.)  they are responsible for. Software 
that is configured in this manner is called interrupt-driven. The list of alerts to which 8-bit AVR 
MCUs can respond are summarized within the respective datasheets in an Interrupt Vector Table. 

2.0 Interrupt Vector Table (IVT) 
An Interrupt Vector Table (aka, Interrupt Jump Table) is a dedicated set of bytes at the beginning of 
Program Flash Memory reserved for programmers to populate with code addresses of their 
functions to execute when specific events occur.  These user functions are best referred to as 
Interrupt Service Routines (ISRs). When correctly configured, the system automatically saves the 
current contents of the Program Counter (on the Stack), goes to a location within the IVT and loads 
the address it finds there into the Program Counter, thereby transferring control (aka jump) to your 
ISR. When your ISR finishes execution, the previously saved address is retrieved from the top of the 
Stack and execution continues as it did prior to the event. 

2.0.0 ATmega328P IVT 

 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 14 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

2.0.1 ATtiny84 IVT 
Understandably, MCUs within the tiny family offer fewer resources, hence a smaller vector table. 

 

2.1 Avoiding Conflicts with the IVT in Assembly Language 
Given its critical role in the successful execution of interrupt-driven applications, the IVT is 
expected to appear at the very start of Program Flash, addresses 0x0000-0x????.  To ensure your 
assembly language data and code avoids this range, use of the .org directive is encouraged.  The 
predefine INT_VECTORS_SIZE supports a degree of MCU-compatibility, as in, 

 

2.1.0 Interrupt Priorities 
The order of the interrupt sources within the vector table is significant. Should two or more 
interrupts occur simultaneously, the sources are queued, with the lower address given priority.  

A natural consequence of this is that a request to reset the MCU is awarded the highest priority. 



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 15 

2.2 Reset Interrupt 
A Reset event results in the clearing of (set to 0) the 
Program Counter. Your code then has the responsibility of 
placing a jump instruction at address 0x0000 of the first 
executable instruction. 

A Reset event can be triggered in a number of ways 
depending on the MCU.  The most common is the power on 
reset. Every time you reconnect power to the MCU a Power 
On Reset event is generated. 

Alternatively, whenever a falling edge (5V→0V) is presented on pin 1, such as the momentary 
button your wired into your breadboard Arduino is Grade 11, you generate an External Reset 
event.  

Another common Reset source is the WatchDog Timer. In this way your software can generate a 
WatchDog Reset when a specific event occurs or at periodic intervals.  

2.2.0 MCUSR (Reset) Register 
The source of a reset can be determined by examining the bits (flags) within the MCU Status 
Register (MCUSR). Unlike many other registers the address and bits with the register are the same 
for the mega328P and tiny84 MCUs. 

 

2.2.1 Rotary Encoder on RSGC ACES Breakout Board 

 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 16 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

2.3 External Interrupts 
Next the Reset interrupt, an external interrupt event can be configured to trigger an immediate 
response. The mega328P has two pins (INT0 and INT1) capable of responding to a changing edge, 
and the tiny84 (INT0) just one.  

2.3.0 ATmega328P External Interrupt Registers 

 

2.3.1 ATtiny84 External Interrupt Registers 
Interrupt Sense Control bits (ISC01 and ISC00) for the ATtiny84 defines the same edges as the 
ATmega328P. 

 



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 17 

2.4 Pin Change Interrupts 
By this point you are aware that your MCUs can sense and respond to external events through the 
use of the External Interrupt System (INTn). The good news is that their corresponding ISCnn bits 
can configured to monitor low, logical, falling, or rising signals. The downside is that their 
application is limited to two specific pins on the ATmega328P and only one on the ATtiny84.  

A useful alternative to External Interrupts for sensing and responding to external signal events are 
Pin Change Interrupts that are applicable to any digital pin! This means that your ATmega328P 
can perform a similar function on all 23 pins and the ATtiny84 on all 12. However, as is always the 
case, the downside is that, as its name implies, only a change (falling or rising) signal edge triggers 
the interrupt. 

2.4.0 ATmega328P Pin Change Interrupt Control Register 
 

 

2.4.1 ATtiny84 General Interrupt Mask Register 
 

 

2.4.2 ATtiny84 Pin Change Mask Registers 
 

 

  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 18 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

3 Timer/Counters  
The heartbeat of a functioning MCU is either an internal or external clock source, aka oscillator 
(e.g. crystal, RC, etc.). The source of the oscillation can be an external crystal (attached to MCU pins 
9 and 10) or an internal oscillator. Every tick of the clock source (up to 20 MHz) is registered as the 
MCU’s free-running clock (clkIO) that runs in the background. Each AVR MCU has multiple 
Timer/Counters. Each Timer/Counter has a suite of registers that can be programmed to produce 
into various waveform shapes from the clock. In addition to its role in coordination around a 
common beat, Timers these peripherals can also count pulses. Your first exposure to the value of 
counting may have been your Grade 10 Counting Circuit project that used a NAND-Gate Oscillator 
as a clock source that was fed into a 4017 decade counter to monitor the ‘ticking’. Specific registers 
are set aside within each Timer/Counter for the accumulation of clock source ‘ticks’.  

Of the many uses a Timer/Counter can be put to, pulse width modulation (PWM) was likely your 
earliest and most common Grade 11 application. Arduino C’s analogWrite(pin,duty) function 
exploits the uses of the respective Timer/Counter associated with the pin requested. 

3.0 ATmega328P 
The ATmega328P has three Timer/Counters 
available for use. For each of the timers two digital 
pins can be directly influenced by register 
behaviour, allowing for maximum efficiency, as 
shown to the right.  

Care must be taken not to inadvertently overlap 
their use. Here is a brief table of common functions 
and libraries that rely on the availability of the 
timers for their correct execution. 

3.0.0 ATmega328P Timer/Counter0 Modes 

 



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 19 

3.0.1 ATmega328P Timer/Counter1 Modes 

 

3.0.2 ATmega328P Timer/Counter2 Modes 

 

 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 20 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

3.0.3 ATmega328P Pulse Width Modulation (PWM) with AnalogWrite() 
Arduino C’s analogWrite(pin, uint8_t) function generates a PWM signal on the back of an 
MCU’s Timer/Counter.  Through the use of the second parameter users can control the duty cycle of 
the signal. Since users can not control the frequency of the PWM waveform the function is not 
suitable in all cases where a digital approximation of a voltage level is required (e.g. servo motor 
horn positioning). 

The table below lists the default frequencies associated with using the 
analogWrite(pin,uint8_t) on each of the respective pins of the ATmega328P, as well as the 
other library functions that rely on these respective Timer/Counters. Users should be aware of the 
potential conflicts that can arise.  

Timer Bits Pins analogWrite Frequency Dependent Functions 
0 8 5, 6 ~980 Hz delay(),  millis(),  micros() 
1 16 9, 10 ~490 Hz Servo Library 
2 8 3, 11 ~490 Hz Tone Library 

 
Readers are encouraged to explore Ken Shirriff’s remarkable blog, “Secrets of Arduino PWM” at, 
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html 

3.0.3.0 Scope Trace of an AnalogWrite() PWM Waveform 
Below is one of my favourite images captured on our scope by Tim Morland (ACES ’18, Queen’s ’23). 

 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 21 

3.0.4 Atmega328P Timer/Counter1 Registers 

 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 22 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

3.0.5 Atmega328P Timer/Counter 1 Normal Mode 0 
An example of the simplest programmable Timer/Counter1 mode would be Mode 0: Normal 
Mode. In this configuration, 

1. Ticks of the clock sources are accumulated in its 16-bit (216) 2-byte register pair: 
TCNT1H:TCNT1L. 

2. When the count reaches the top (65535 = 0Xffff), an overflow interrupt is generated 
3. The interrupt can be dealt with in at least 3 ways: ignored completely, handled in software 

or responded to in hardware for example, with the OC1A or OC1B pins connected. 
4. The counter simply rolls over and resumes counting from 0x0000.  
5. A prescaler may be applied to the clock to map the counting source to a reduced frequency.  
6. As an example, consider Timer/Counter 1 in Normal Mode 0 under a 16 MHz crystal clock 

source with a prescaler of 256. The overflow frequency would be 224/28/216 = 1 Hz. 

 

 

You’ll be shown how different techniques in class for #defineing and #includeing these type of 
bit sequences depending on your preferred toolchain.  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 23 

3.1 ATtiny84 
From it inception, our RSGC ACES Dolgin Development 
Platform hosts the AVR ATtiny84 as its preferred MCU. The 
JLCPCB rendering of V7 appears to the right. This 
microcontroller was selected for a variety of reasons not 
the least of which was DAMellis/Konde ATtinyCore suite of 
Arduino IDE software supports, its compact footprint (14 
pins) and having just enough peripheral features (External 
Interrupt, two Timer/Counters, ADC, Watchdog etc.) to 
support a wide range of applications. 

You are encouraged to undertake a visual comparison of 
the features attached to each of the pins in the official 
diagram below and how the DDB breaks out the pins to the 
headers on our PCB to the right. 

In the diagram below, the two pins of the 8-bit 
Timer/Counter0 are highlighted in red. As well, the two 
pins of the 16-bit Timer/Counter1 are highlighted in green. 

 

3.1.0 ATtiny84 Timer/Counter0 Modes 

 

  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 24 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

3.1.1 ATtiny84 Timer/Counter1 Modes 

 

 

3.1.2 ATtiny84 Pulse Width Modulation (PWM) with AnalogWrite() 
Through the use of the analogWrite(pin, duty cycle) function provide by the core 
Arduino libraries, a limited form of PWM signals have been available to you for such applications as 
dimming LEDs and DC motor speed control. Depending on which pin you invoke the behaviour on, 
you are implicitly selecting one of the available Timer/Counters on your MCU. This is summarized 
for the Ttiny84 in the table below. 

Timer Bits Pins 
analogWrite 

Frequency Dependent Functions 

0 8 8 (PB2), 7 (PA7) ? Hz delay(),  millis(),  micros() 
1 16 6 (PA6), 5 (PA5) ? Hz Tone Library, Servo Library 

 

Care must be taken when using analogWrite to avoid pins required by parallel use of the 
dependent functions indicated above that would result in strange behaviour. 

Finally, As useful as the analogWrite function is, it does not offer control over the frequency of 
the square wave which is essential for a wider variety of MCU functionality and applictions. We 
need to dig deeper. 



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 25 

3.1.3 ATtiny84 Timer/Counter Registers 

 

3.2 ATtiny85 Timer Application: Function Generator 
Inspiration for an RSGC ACES Function Generator developed in the Spring of 2021, based on the 
position of a rotary encoder, came from David Johnson-Davies terrific blog on the project, 
http://www.technoblogy.com/show?22HF. 

 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 26 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

3.3 Accessing 16-Bit Registers 
(Lifted directly from the ATmega328P datasheet…) 

The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via the 8-
bit data bus. The 16-bit register must be byte accessed using two read or write operations. Each 16-
bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit access. The 
same temporary register is shared between all 16-bit registers within each 16-bit timer. Accessing 
the low byte triggers the 16-bit read or write operation. When the low byte of a 16-bit register is 
written by the CPU, the high byte stored in the temporary register, and the low byte written are both 
copied into the 16-bit register in the same clock cycle. When the low byte of a 16-bit register is read 
by the CPU, the high byte of the 16-bit register is copied into the temporary register in the same clock 
cycle as the low byte is read. 

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-bit 
registers does not involve using the temporary register. 

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low 
byte must be read before the high byte. 

The following code examples show how to access the 16-bit Timer Registers assuming that no 
interrupts update the temporary register. The same principle can be used directly for accessing the 
OCR1A/B and ICR1Registers. Note that when using “C”, the compiler handles the 16-bit access. 

 



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 27 

4 ADC: Analog to Digital Conversion 
The real world is continuous; the behaviours that nature exhibits (heat, 
pressure, light, force, etc.)  are said to be analog. Many forms of sensors 
exist that convert these analog behaviours to continuous voltage levels.  A 
light-dependent resistor or LDR (aka. photoresistor) for example, in series 
with another known resistor level, can provide an MCU with access to a 
continuous voltage.  

The digital world of MCUs interpret the analog voltage output of the sensors by mapping them to a 
range of discrete voltage levels represented internally, by binary numbers. The MCU’s process of 
transforming a continuous analog voltage reading to a discrete digital approximation is the subject 
of this chapter.  

Of all the features that microcontrollers offer, a strong case could be made for Analog to Digital 
Conversion being its most important function. After all, the ability to capture real world data and 
digitize it for manipulation, transmission, and storage purposes is an undeniably critical feature 
within our modern world. Although the AVR line of 8-bit MCUs offers a 10-bit onboard ADC unit 
that we've exploited for a number of purposes, what if our needs called for either a higher or lower 
sampling accuracy? A deeper understanding of how the ADC function works is called for should we 
wish to build our own ADC unit. 

4.0 Analog Comparator 
In previous years you likely explored the ability of operational 
amplifier to act as a comparator. The classic LM741 will output a 
high signal on Pin 6 if the voltage on the non-inverting input 
(Pin 3) is greater than the voltage appearing on the inverting input 
(Pin 2), otherwise Pin 6 will present a low. 

The AVR family of MCUs has a built-in comparator that can be 
accessed.  

 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 28 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

 

4.1 DAC: Digital to Analog Conversion (DAC) 
Of all the features that microcontrollers offer, a strong case could be made for Analog to Digital 
Conversion being its most important function. After all, the ability to capture real world data and 
digitize it for manipulation, transmission, and storage purposes is an undeniably critical feature 
within our modern world.  

The fundamentals of how a DAC works can be 
vividly explored through the use of a passive 
resistor network known as an R2R Ladder, which 
we shall undertake. Although the AVR line of 8-bit 
MCUs offers a 10-bit onboard DC unit that we've 
exploited for a number of purposes, what if our needs called for either a higher or lower sampling 
accuracy? A deeper understanding of how the ADC function works is called for should we wish to 
build our own ADC unit. 

4.2 Successive Approximation 
An informative base from which to mount our investigation 
might start with a somewhat familiar binary tree. As a 
child you might have engaged in a guessing game in which 
a series of ranked guesses with a response of either lower 
or higher could lead you to your target. Indeed, this 
approach could lead to a conversion method from decimal 
to binary as suggested by the labeled paths. 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 29 

5 Preparations for AVR Assembly Language Programming (AALP) 
The past year-and-a-half has prepared you for a journey 
very few secondary school students are able to undertake.  
That is, descend to the deepest levels possible of a modern 
microcontroller. In fairness, the deepest level an embedded 
system programmer can go is to program in Machine 
Language (aka. binary or hexadecimal). Since this is barely 
readable by humans the numeric codes are assigned 2-4 
letter mnemonic names to make them reasonably 
understandable while taking nothing away from their 
efficiency. This set of codes is the focus of this course and is known as Assembly Language. Here is a 
list of the top 10 most popular computer languages as of June 2021, 

 

Embedded systems is the computer engineers’ term for 
modern smart devices. Microcontrollers lie at the heart of 
these systems and, in order to maximize their performance, 
you must speak their native language.  

With the exception of C and Assembly the remaining eight 
languages are high-level tools designed to run on operating 
systems that hide keep the hardware efficiencies out of site 
for their practitioners. 

Each microcontroller or microprocessor line (from AVR, 
PIC, NXP, Intel, etc.) has its own native machine and assembly language.   



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 30 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

5.0 Development Preparations 

5.0.0 Hardware: Atmel/Microchip AVR Microcontrollers 
Up until recently, two microcontroller companies dominated the marketplace. ATMEL backed its 
AVR line of MCU products and Microchip championed its PIC family. The two companies merged in 
April 2016 under the Microchip name, continuing to offer both products. Until such time as the 
Arduino ceases to use the AVR line as its microcontroller of choice, RSGC ACES will stick with it. 
 http://www.microchip.com/design-centers/8-bit/avr-mcus 

 

5.0.0.0 Peripheral Integration 
All AVR microcontrollers share the same assembly 
language consisting of approximately 130 different 
instructions. A handful of instructions are MCU-
specific. 

Although our course focuses on the ATmega328P, 
ATtiny84, and ATtiny85, you should not feel limited 
to these alone for your particular application. You are 
encouraged to explore the 8-bit AVR MCU Peripheral 
Integration document to choose just the right 
combination of features for your embedded system. 
There are a wide variety of options for you to choose from that will suit almost any application. 

http://ww1.microchip.com/downloads/en/DeviceDoc/30010135D.pdf 



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 31 

5.0.1 Software Development Tools 

5.0.1.0 Integrated Development Environment: Atmel Studio 7 
ATMEL, the manufacturers of the AVR line of microcontrollers have developed the most 
comprehensive IDE for their MCUs. The latest version, ATMEL Studio 7, offers the richest, most 
professional, set of tools for AVR embedded systems development. 

Note. Since I run Windows 7 on my laptop, I am limited to Atmel Studio 6 as the screenshots reflect. 

 

The screenshot above is of Blink-like code running in the AS6 Simulator. Numbered panels are as 
follows, 

1. Source code. 

2. Processor View. Shows the contents of the General Purpose Registers and selected Extended 
Registers reflecting the flow of control after each statement execution. 

3. IO View. Shows the state of the peripherals and IO Ports after each statement execution. 

There is so much ahead of us, but what is unique to note at this early stage of the course is the 
intimate relationship between the assembly code statements and the hardware. It is only through 
deliberate precision that your code has on the hardware that the absolute efficiency required of 
your embedded systems can be achieved. 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 32 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

5.0.1.1 Operating System: Windows 10 
Unfortunately, only a Windows version of ATMEL Studio 7 exists. So, you need to install Windows 
10 on your laptop. Ethan Peterson (ACES ’18, Queen’s ’22) was kind enough to assemble the 
following installation guide for your convenience… 

Before You Begin: 

- Your Mac (Connected to its charger) 
- A USB Flash Drive to act as your Windows installation media 

o 16GB or larger 
o Should be completely blank. If not, backup your files elsewhere and erase the flash 

drive. Depending on the file system, the flash drive may need to be reformatted 
using Disk Utility as a MS-FAT volume using Master Boot Record (MBR) 

- Download a copy of the Windows 10 ISO Image. (https://www.microsoft.com/en-
us/software-download/windows10) 

- Make a backup of important files on the Mac side of your computer. This is needed in case 
the installation goes wrong. 

 

Step 1: Open BootCamp Assistant 

 



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 33 

 

- Click “Continue” 
 

Step 2: Format your Windows Partition 

- Depending on the age of your MacBook 
the next screen in the BootCamp Wizard 
will be different. 

- If you are prompted to connect a USB 
flash drive go ahead and do so. If not, 
your laptop will store the windows 
installation media internally.  

- Select the location of the Windows 10 ISO 
file you downloaded as shown above. 

- Select a size for the Windows partition on 
your computer. The minimum size is 
40GB, which should be more than enough 
for your AVR Studio projects throughout 
the year. Depending on your MacBook, this minimum may be different. 

- This partition cannot be adjusted later so it is better to reserve additional space if you think 
you may need it. 

 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 34 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

Step 3: Installing Windows 

- Unplug any external devices from your laptop that are not critical to the installation, such as 
an external keyboard, mouse and hard drive, as they can interfere with the installation. 
Leave only the charger and USB connected if it is required and click “Install” on the 
BootCamp Wizard. 

 

 

- BootCamp will start downloading the Windows Support Software drivers. 
- These drivers are installed in Windows to ensure the keyboard, trackpad and other 

peripherals on your Mac run correctly. 
- When the download is complete your computer will prompt you to restart. 
- The computer should automatically boot into the Windows installer. 
- Follow the onscreen instructions 

 

 



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 35 

- When the “Activate Windows” screen is reached, click “I don’t have a product key” and 
select the Pro edition of Windows. 

- Click “Next” and accept the terms and conditions 
- If prompted, pick the partition called “BOOTCAMP” as your installation destination. 
- Once Windows is done installing, the system will reboot into your fresh installation of 

Windows. If your computer boots into OSX, shut it down and hold the option key while 
starting up. When the computer prompts you for what OS you would like to use, select 
Windows. 

- When Windows is started for the first time you will have to configure some settings. Follow 
the onscreen instructions for this. 

- When you reach the Windows Desktop, the Windows Support Software installer should 
open and guide you through the driver installation. If not, you will have to install it manually 
from your installation media. 

o Follow the instructions here: https://support.apple.com/en-ca/HT208495 
o If you used a USB flash drive for installation, plug it back in and get the software 

from there as opposed to the OSXRESERVED Partition on Windows. 
 

Step 4: Install Atmel Studio 

- Download Atmel Studio 7: http://www.microchip.com/mplab/avr-support/atmel-studio-7 
- Select the offline installer 
- Open the file and follow the installation prompts. 

 

5.0.1.2 Programmer: Atmel ICE 
Currently, the best programmer for use with ATMEL 
Studio 7 is the ATMEL Basic ICE. These are expensive 
programmers so you will be lent one for use this year. 

Return it in working order at the end of the year and its 
use is free of charge. Caution. For such an expensive 
device the ribbon cable is surprisingly cheesy. 

Strangely is does not provide its own power. You must 
supply power to your Arduino separately. 

https://www.digikey.ca/product-detail/en/microchip-
technology/ATATMEL-ICE-BASIC/ATATMEL-ICE-BASIC-

ND/4753381 

5.1 Microchip’s Online Reference 
Learning Assembly Language and gaining familiarity with the tools takes a time and practice. Online 
support is available and I recommend starting any search for insight at Microchip’s online home 
page. You may even wish to bookmark this URL, 

https://www.microchip.com/webdoc/index.html 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 36 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

 

5.2 New Atmel Studio Project  
1. Before beginning your first project create a folder to house your ICS4U Assembly projects. 

2. Launch File > New > Project and complete the dialog as shown below, left. Press, OK. 

3. In the Device Selection dialog, select the target device (ATmega328P). 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 37 

5.3 Your First Project: Blink 

5.3.0 Simulator 
Without an Arduino plugged into your laptop, the 
Arduino IDE allows you to compile your code to 
stabilize your syntax but, understandably, 
prevents you from uploading to test if it works.  

Atmel Studio does allow you to execute your code 
without a physical MCU being present. It does so 
through the services of a built-in Simulator utility.  

Select Project > (project) Properties > Tools > Simulator  

5.3.1 Hardware 
Launching the Atmel Studio Simulator allows you 
to step through your assembly code, one statement 
at a time, and monitor the MCU hardware.  The IO 
View, shown to right is where the detailed status of 
each peripheral can be followed.  

Checking the pin mapping diagram inside the cover 
of this workbook reveals that pin 13 is mapped to 
bit 5 of PORTB. Terminology, 

To set a bit, means to make it 1 

To clear a bit means to make it 0 

So, a blinking LED on Arduino pin 13 is the result of 
two actions, 

a) The direct setting bit 5 of the DDRB (Data 
Direction Register of PORTB), and, 

b) Applying a square wave signal (alternate 
setting and clearing) to bit 5 of PORTB. 

 

 

  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 38 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

5.3.2 Software 
Create a new Atmel Studio Assembly project and name it Blink. Download the source code 
Blink.asm and replace the default Blink.asm that was create for you in Debug folder.  

rsgcaces > AVROptimization > 1_Getting_Started > Blink.asm 

5.3.2.0 Source Code Appearance 
A quick glance that assembly source code of the 
Blink program reveals some standard features of 
the IDE that include, 

1. Syntax highlighting (green for comments, blue 
for keywords) 

2.  Line numbers 

3. Tab stops 

4.  Live hyperlinks 

5.3.2.1 Assembly Source Code 
Unlike high level source code, executable statements in AVR Assembly follow one of four a common 
syntactic structure (square brackets indicate an optional element), 

[label:] instruction [operands] [Comment] 

[label:] directive [operands] [Comment]  

Comment  

Empty line  

1. A label provides a symbol that is the target of branch or a variable. 

2. An instruction is a 2-4 letter mnemonic opcode. 

3. Zero, one, or two operands provide the domain of the instruction.  

4. A preprocessor directive (starts with a #) and an assembler directive (starts with a dot, .) are 
requests for some preparatory action prior to the assembler converting your code to machine 
language. 

5. A comment illuminates the purpose of the statement and either appears at the end of the 
statement, or starts in Column 1 and occupies a line by itself. The syntax below confirms that a 
semicolon alone qualifies as a comment. 

; [Text]  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 39 

5.3.3 Debugging Blink.asm 
Once the Blink Project has been established, and 
the Simulator declared as the default 
debugger/programmer Tool, 

Project > Blink Properties 

debugging is initiated by going to the Build menu 
and selecting, 

Start Debugging and Break (Alt-F5) 

At that moment you will see the first executable 
instruction line highlighted in yellow and Processor 
Window displayed (right). A few things to note 
about the Processor Window, 

1. The Program Counter always hold the address 
of the instruction to be executed. 

2. The Stack Pointer holds the address of the top 
of the Stack. The Stack starts at the end of 
SRAM (0x8FF) and grows upwards (more on 
this later). 

3. The X, Y, and Z registers are aliases for the 
double 16-bit register combinations R26:R27, 
R28:R29, and R30:R31, respectively. 

4. The Status Register (SREG) is a special byte 
register in SRAM (0x5F) consisting of a set of 
bits (aka flags) that are either set, cleared of left 
unchanged by the previously executed 
statement. This byte can be read by your code 
to determine whether a course of action needs 
to be taken. 

5. The contents of the CPU’s 32 General Purpose 
registers are updated dynamically to facilitate your debugging objectives. 

1.3.3.0 Stepping and Breakpoints 
Once the simulator is underway you have a options to step through 
your code, statement by statement monitoring the effect on the 
processors resources. Breakpoints can be toggled on or off by clicking in the left margin. 

The IO View can also be displayed allowing to both read and write data on the fly.   



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 40 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

5.4 ATmega328P Features 
http://mail.rsgc.on.ca/~cdarcy/Datasheets/ATmega328PSummary.pdf  

 



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 41 

 

5.5 Peripherals 
What separates a microcontroller from a microprocessor is that the format has a number of internal 
peripherals. Here is a partial list of those on the ATmeg328P, 

 ADC: Analog-to-Digital Converter 
 Timers/Counters: 8- and 16-bit 
 PWM: 8- and 16-bit Pulse Width Modulation 
 Temperature Sensor 
 Internal Voltage Regulator 
 Multiplication: Dedicated hardware for multiplying two 8-bit values with 16-bit result 
 USART, I2C, SPI 

 QTouch (Capacitive Touch Sensor) Support, Sleep Modes 

5.6 AVR Central Processing Unit (CPU) 
Just before we take a detailed look at the structure 
of AVR Assembly Source code in the next chapter, it 
is instructive to familiarize yourself with how the 
CPU works. 

The AVR Central Processing Unit consists of a 
number of different modules interconnected 
through a number of buses. The 8-bit data bus is 
highlighted by the thicker line. The address bus 
and control bus are not shown. The execution cycle 
can be thought of as a repetition of three stages: 
Fetch-Decode-Execute. 

Although it does not use the AVR as its hardware, 
sequence is identical in this terrific video, 

https://www.youtube.com/watch?v=XM4lGflQFvA 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 42 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

It’s all quite fascinating but the Decode stage is worth a mention at this point. The first assembly 
instruction in the Blink code from Chapter 1 is, 

Assembly Language Machine Language Equivalent Hexadecimal 

ldi r16,1<<PB5 1110 0010 0000 0000 E200 

The decoder is a combinational hardware circuit that must accept the two byte (16-bit) input E020 
and parse it in such a way that the rest of the CPU assets know to place the binary value of B0010 
0000 in Register 16. To keep the Decoder to a manageable level of complexity, the number of 
possible instructions, and their complexity must be reduced to a minimum. These requirements 
give rise to the identification of the 8-bit AVR line of microcontroller as begin of a RISC (Reduced 
Instruction Set Computer) type. 

Finally, a word about execution. Given a three-
stage execution cycle, it might appear that 
instructions are only executed every third stage. 
However a strategy referred to as pipelining has 
the three stages functioning synchronously, 
resulting in a statement being executed every 
clock cycle. 

Reference: http://darcy.rsgc.on.ca/ACES/TEI4M/Assembly/AVRCPURegisters.pdf 

The image below offers a good summary of a number of features discussed to this point. It was 
taken from the short but informative pdf referenced above. 

 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 43 

5.7 Package Types 

 

 

5.7.0 Digikey: Ordering 

 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 44 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

5.7.1 Digikey: SchemeIt 

 

 

RSGC ACES: DDBv6 Software Serial Output 

 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 45 

5.8 Interesting Exercises 

5.8.0 Delay Calculator 
Here is the link to the online version of Bret Mulvey’s AVR Delay utility, 

http://www.bretmulvey.com/avrdelay.html 

A remarkable example of ACES insight and initiative was one afternoon in 2018 where I happened 
to mention that I thought Mulvey’s calculator could be improved if the user was permitted to name 
the starting register for the sequence of delays. Nothing more was said in class.  T. Morland 
(ACES ’18) went home that afternoon and upgrade Mulvey’s code that we prefer to link to, Amazing. 

http://darcy.rsgc.on.ca/ACES/TEI4M/AVRdelay.html  

5.8.1 Traffic Light 
Insert a Schaffer traffic light into your Arduino in such a way that all four pins land 
within a single PORT.  

Create the project TrafficLight and model the solution to a continuous display 
after the Blink project code. 

Comment your code thoroughly, but not gratuitously. 

5.8.2 RGB LED 
Insert an RGB LED into your Arduino in such a way that all four pins land within a 
single PORT.  

Create the project RGBLED and develop a continuous display that runs through all eight 
combinations of LEDs (1 blank, 3 singles, 3 doubles, 1 triple). 

Comment your code thoroughly, but not gratuitously. 

5.8.3 Questions 
1. ATmega328P has 32K worth of PROGRAM FLASH. What is the highest address in hexadecimal? 

__________________ 

2. The ATmega328P has 2K worth of SRAM. What is the highest address in hexadecimal? 

__________________ 

2. The ATmega328P has 1K worth of EEPROM. What is the highest address in hexadecimal? 

__________________ 

 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 46 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

5.9 Just Before We Start: C 
/* 
 * CBeast.c 
 * Example of AVR-gcc C Code to present the 
`* value of pi on 'The Beast'.'The Beast' is a 
 * PCB designed to present a 12-digit 
 * PoV display using a normal 595 shift registers 
 * for the segment and TPIC6C595 Power logic  
 * current sink for the LA-301 cathodes 
 * Created: 8/10/2018 1:10:28 PM 
 * Author: Chris Darcy */  
 
#include <avr/io.h> 
#define F_CPU 16000000UL  // 16 MHz 
#include <util/delay.h> 
 
uint8_t latch = 1<<PB2;  //digital pin 10 
uint8_t clock = 1<<PB3;  //digital pin 11 
uint8_t data = 1<<PB4;  //digital pin 12 
 
// Seven Segment Order:dGFEDCBA 
uint8_t dp = 1<<7; 
//Assemble the hexadecimal segment maps into single array... 
uint8_t  segMaps[] = {0b00111111,0b00000110, 0b01011011, 
0b01001111,0b01100110,0b01101101,0b01111100,0b00000111,0b01111111,0b01100111, 
                   
0b01110111,0b01111100,0b00111001,0b01011110,0b01111001,0b01110001}; 
 
char display[] = "314159265539";  //Sample... 
 
//my 'super' shiftout (23 bits are shifted in one go) 
void shiftOut(uint8_t d, uint8_t c, uint8_t l, uint32_t segMap, uint32_t digit ){ 
 uint32_t bits = (segMap<<16) | digit; 
 // assemble the 23-bit shift out value from the segMap and the respective digit 
 //pull latch low... 
 PORTB &= ~latch; 
 //synchronously clock in the data bits  
 for (uint32_t mask=1L<<23; mask>0; mask>>=1) { 
  PORTB &= ~clock; 
  // should the data bit be set or clear? 
  if (bits & mask) 
   PORTB |= data; 
  else  
   PORTB &= ~data; 
  PORTB |= clock; 
 }  
 //pull latch high to present present flipflops on the output pins... 
 PORTB |= latch; 
} 
 
int main(void) { 
  // Let's use three pins of portB for the shifting... 
  DDRB = 0xFF; 
  uint8_t i = 0; 
  uint32_t segments;  
  while(1) { 
 segments = segMaps[display[i]-48]; 
 if (!i) segments |= dp;  //add decimal point on the 3 for pi  
 shiftOut(data,clock,latch,segments,1L<<(11-i)); 
 i = (i+1) % 12; 
  }}  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 47 

 

6 AALP: AVR Assembly Language Programming  
A clarification about the terminology, assembly and assembler. Whereas some sources prefer to use 
the terms interchangeably, I do not. I use the term assembly to refer to the mnemonic-based 
language of the CPU. I use to the term assembler, when I am referring to the program that converts 
code written in assembly (.asm) into machine code (.hex) 

6.1 Assembly Code Organization 
Earlier in Chapter 1 the four possible varieties of assembly source code statements were reviewed. 

In this section we’ll tackle the organization of these statements within ATMEL Studio and the 
conventional layout of your .asm files.  

1. Comment. At the top of your code a comment describing the purpose, author and date is 
expected 

2. Preprocessor. Starting after the opening comment and continuing throughout the source file, a 
set of directives assist the assembler in building your final machine loadable (hex) file. These 
commands start with # as the first non-space character of which #include 
“m328Pdef.inc” would be one such directive. This directive is done automatically so it is 
optional. 

3. Assembler Directives. Numerous directives that start with a dot, are recognized by the 
assembler to facilitate code organization, memory requests, aliases, and conditional execution 
to name a few. Some examples are, 

 .EQU io_offset = 0x23  
 
 .DSEG  
 var1:  .BYTE 1   ; reserve 1 byte to var1  
 table: .BYTE tab_size ; reserve tab_size bytes 
 
 .DEF temp = r16  
 .DEF ior = r0 
 .CSEG  
 ldi temp,0xf0  ; Load 0xf0 into temp register  
 in ior,0x3f  ; Read SREG into ior register  
 eor temp,ior ; Exclusive or temp and ior 
 

4. Interrupt Jump Table. As required, the first 30 addresses of Program Flash or so are reserved 
for the Interrupt Jump Table. Care should be taken when using this space. To avoid code  

 .CSEG  
 .ORG  0    ;ensure PC starts at the beginning 
  rjmp reset 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 48 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

 
 reset: ldi r16,1<<PB5  ;first instruction in your code 
 
5. One-Time Initializations (setup). Very much like the setup() function in Arduino C last 

year, include assembly code that needs to run only once at this point. 

6. Main Loop Body. Include assembly instructions that run continuously. 

7.  Additional Functions and Interrupt Service Routines.  

  

6.2 Reusable Building Blocks 
The code fragments below offer common building blocks you will use repeatedly. 

1. Numeric constants can be defined as binary, octal, decimal (default) or hexadecimal. Here is 
how you would represent the base 10 number 100 in each of the other three bases, 

Binary (Base 2, leading zero):  0B01100100, 0b01100100 
Octal (Base 8, leading zero):  0144 
Hexadecimal (Base 16):  0x64, $64 

2. The shift left (<<) operator offers an efficient expression resulting in the setting a specific bit 
initialization of a byte. 

  ldi r16,1<<3  ;B00001000  
 ldi r17,1<<PB5  ;B00100000 
 ldi r20,7<<4  ;B01110000 

3. Non-consecutive bits within a byte are set with the or operator (|). 

  ldi r16, (1<<ICIE1) | (1<<TOIE1) ;falling edges in ICR1H:L 

4. Labels as operands. Use of the .ORG directive assists in laying out your code and data in 
memory. Labels are aliases for their location in memory and can be used as such as operands. 

5. Initializing the pointer registers (X, Y, and Z) with the starting address of an array is as 
follows, 

  ldi XL,low(RPMStart<<1) ;position X and Y pointers to the 
 ldi XH,high(RPMStart<<1) ;start and end addresses of RPM array 

6. Toggling a specific bit is best accomplished with the exclusive-or, eor. Consider how the 
mask, 0b0010000 can be applied repeatedly to toggle bit 5 of the data, 

data: 0b11111111 

mask: 0b00100000 



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 49 

data^mask = data: 0b11011111 

mask: 0b00100000 

data ^mask=data: 0b11111111 

mask: 0b00100000 

data ^mask=data: 0b11011111 

 

7. Understand the difference between logical NOT and bitwise NOT. 

  Logical: ldi r16,!0xf0 ; Load r16 with 0x00 

  Bitwise: ldi r16,~0xf0 ; Load r16 with 0x0f 

6.3 Basic Instructions by Function 
The complete list of functions either in summary or full descriptions is available off links at the top 
of our home page.  

6.3.0 Register Setting 
clr Rd ;clears a register (0 ≤ 𝑑 ≤ 31). Same as eor Rd,Rd 

ser Rd ;sets a register to 255 (16 ≤ 𝑑 ≤ 31). Same as ldi Rd,$FF 

ldi Rd,K ;loads the constant K into Rd (16 ≤ 𝑑 ≤ 31, 0 ≤ 𝐾 ≤ 255) 

6.3.1 Copying 
mov Rd,Rs  ;copy contents of Rs to Rd 
in Rd,port ;read the port contents into Rd 
out port,Rs ;write the contents of Rs to the port  
lds Rd,K  ;load the contents of address K in SRAM into Rd 
sts K,Rs  ;store contents of Rs in address K of SRAM 
lpm   ;load the contents of address pointed to by Z into R0 
pop Rd  ;copy the contents of top of the Stack to Rd 
push Rs  ;copy the contents of Rs onto the top of the Stack 

6.3.2 Adding 
inc Rd  ;add 1 to Rd (rollover) 
add Rd,Rs  ;add Rs to Rd (no carry:C flag) 
adc Rd,Rs  ;add Rs to Rd (with carry:C flag) 

adiw Rd,K  ;add K (0 ≤ 𝐾 ≤ 63) to Rd+1:Rd (𝑑 ∈ {24,26,28.30}) 

  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 50 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

6.3.3 Subtracting 
dec Rd  ;subtract 1 from Rd (rollover 0-1=255) 
sub Rd,Rs  ;store the difference Rd-Rs in Rd 

subi Rd,K  ;store the difference Rd-K in Rd (16 ≤ 𝑑 ≤ 31) 
sbc Rd,Rs  ;store the difference Rd-Rs in Rd with carry 
sbci Rd,K  ;store the difference Rd-K in Rd with carry 

6.3.4 Shift & Rotate 
lsl Rd  ;logical shift left: C←Bit7,Bitn+1←Bitn,Bit0←0 
lsr Rd  ;logical shift right: 0→Bit7,Bitn+1→Bitn,Bit0→C 

rol Rd  ;rotate left: C←Bit7,Bitn+1←Bitn,Bit0←C 
ror Rd  ;rotate right: C→Bit7,Bitn+1→Bitn,Bit0→C 
asr Rd  ;arithmetic shift right: Bit7→Bit7,Bitn+1→Bitn,Bit0→C 
 

RSGC ACES: Charlieplex Audio-Responsive Equalizer 

 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 51 

6.3.5 Binary 
and Rd,Rs  ;logical AND: Rd←Rd&Rs 
andi Rd,K  ;logical AND: Rd←Rd&K, (16 ≤ 𝑑 ≤ 31,0 ≤ 𝐾 ≤ 255) 
or Rd,Rs  ;logical OR: Rd←Rd|Rs 
ori Rd,K  ;logical OR: Rd←Rd|K, (16 ≤ 𝑑 ≤ 31,0 ≤ 𝐾 ≤ 255) 
eor Rd,Rs  ;Exclusive OR: Rd←Rd^Rs 
com Rd  ;One’s Complement: Rd←~Rd or Rd←$FF-Rd 
neg Rd  ;Two’s Complement: Rd←~Rd+1 or Rd←0-Rd 

6.3.6 Bit Manipulation 
sbr Rd,K ;sets various bits: Rd←Rd|K, (16 ≤ 𝑑 ≤ 31,0 ≤ 𝐾 ≤ 255) 
cbr Rd,K ;clears various bits: Rd←Rd&~K, (16 ≤ 𝑑 ≤ 31,0 ≤ 𝐾 ≤ 255) 
sbi A,b ;sets bit in I/O port: A←A|(1<<K), (0 ≤ 𝐴 ≤ 31,0 ≤ 𝑏 ≤ 7) 
cbi A,b ;clears bit in I/O port: A←A&~(1<<K), (0 ≤ 𝐴 ≤ 31,0 ≤ 𝑏 ≤ 7) 
 

 

6.3.7 Compare 
cp Rd,Rs  ;Form Rd-Rs to influence SREG Flags (0 ≤ 𝑑 ≤ 31) 
cpi Rd,K  ;Form Rd-K to influence SREG Flags (16 ≤ 𝑑 ≤ 31) 
tst Rs  ;influence N and Z SREG flags based on Rs (0 ≤ 𝑑 ≤ 31) 

6.3.8 Jump: Unconditional 
rjmp K  ;unconditional branch ±2K words from current address 
rcall K  ;call to subroutine ±2K words from current address 
ret   ;return from subroutine (STACK operation) 
reti   ;return from interrupt (STACK operation) 

6.3.9 Skip: Conditional 
sbic A,b  ;skip next statement if bit in IO register is clear 
sbis A,b  ;skip next statement if bit in IO register is set 
sbrc Rd,b  ;skip next statement if bit in Rd is clear 
sbrs Rd,b  ;skip next statement if bit in Rd is set 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 52 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

6.3.10 Branch Instructions 
Branch instructions are employed with the intent of immediately altering the contents of Program 
Counter (that is, the address of the next instruction to be executed) based on a flag, or combination of 
flags in the Status Register as a result of the previous executable statement. Unlike the rcall 
instruction that returns control to the ‘what would have been the next instruction’ after the function 
is complete, branch instructions alter the Program Counter permanently. 

 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 53 

6.4 Signed Representation of Numbers 
Due to the limitations of hardware it is simply not practical to maintain the normal arithmetic 
conventions of + and  - signs as indicators of positive and negative numbers.  

Even if that were possible, in designing a technique for the signed representation of numbers, 
computer engineers realized that whatever they came up with should place no additional burden 
on arithmetic operations for positive and negative operands.  

Although a number of strategies have been employed for the signed representation of, binary 
numbers is two’s complement algorithm.  

6.4.0 Two’s Complement 
The accepted process of negation for binary numbers is referred to as the two’s complement 
algorithm. This is a two-step process by which you form the one’s complement first and then add 1. 
Three examples appear below. Explain each one in terms of it’s decimal equivalent. 

 

Note that the value 10000000 is its own two’s complement value! What to do? Since the msb is 1 
computer engineers decided that, to be consistent, it should be interpreted as a negative number, 
and the largest number in the range at that! This is why signed integer ranges are always 
asymmetric as in, −𝟏𝟐𝟖 ≤ 𝑛 < 127, −𝟑𝟐𝟕𝟔𝟖 ≤ 𝑛 < 32767, etc. 

  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 54 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

6.5 Expressions 
AVR expressions are constructed from numeric constants, operators, labels (addresses) and 
functions. 

6.5.0 Operators 
https://www.microchip.com/webdoc/index.html 

Operator Description Precedence Assoc Example 

! Logical NOT 14 None ldi r16,!0xf0 ;Load r16 with 0x00 

~ Bitwise NOT 14 None ldi r16,~0xf0 ;Load r16 with 0x0f 

- Unary Minus 14 None ldi r16,-2  ;Load -2(0xfe) in r16 

* Multiplication 13 Left ldi r30,label*2;Load r30 with label*2 

/ Division 13 Left ldi r30,label/2;Load r30 with label/2 

% Modulo 13 Left ldi r30,label%2;Load r30 with label%2 

+, - Add, Sub 12 Left ldi r17,c1-c2 ;Load r17 with c1-c2 

<<, >> Shift left, 
right 

11 Left ldi r17,c1>>c2 ;Load r17 with c1 
shifted right c2 times 

<,<=,>,>= Sign: 0 or 1 10 None ori r18,bitmask*(c1<c2)+1 ;Or r18 
with an expression 

==, != Sign: 0 or 1 9 None andi r19,bitmask*(c1==c2)+1 ;And r19 
with an expression 

& Bitwise AND 8 Left ldi r18,high(c1&c2) ;Load r18 with an 
expression 

^ Bitwise XOR 7 Left ldi r18,low(c1^c2) ;Load r18 with an 
expression 

| Bitwise OR 6 Left ldi r18,low(c1|c2) ;Load r18 with an 
expression 

&& Logical AND 5 Left ldi r18,low(c1&&c2) ;Load r18 with an 
expression 

|| Logical OR 4 Left ldi r18,low(c1||c2) ;Load r18 with an 
expression 

? : Ternary 3 None ldi r18, a > b? a : b ;Load r18 with 
the maximum numeric value of a and b. 

 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 55 

6.5.1 Expression Separation Functions 
The AVR Assembler offers a number of built-in functions to facilitate your coding. A useful 
collection of functions allows you to separate bytes and words from larger expressions. Here is a list 
taken from the, 

 AVR Assembler’s User’s Guide (https://www.microchip.com/webdoc/) 

 

 The last four functions support your mathematics algorithms. 

RSGC ACES Universal Shield V1: R2R Ladder as a DAC 

 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 56 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

6.6 Variables 
Variables required an identifier (address) and storage space (bytes). 

A label serves as the variable’s identifier and bytes of storage can be set aside in any of the three 
memories (Program Flash, SRAM or EEPROM) through the use of assembler directives. 

6.6.0 Variable Use in SRAM 
This example demonstrates the use of byte-size variables in SRAM. Use of the .DSEG and .BYTE 
assembler directives ensure the storage for the count variable is located in SRAM. The assembly 
instructions lds and sts are the load and store instructions for SRAM addresses. 

rsgcaces > AVROptimization > 2_Small_Steps > VariablesSRAM.asm 

The screen capture below was taken at the end of a debug session with the Memory and Processor 
Windows (Debug>Windows>etc.) revealing the contents of their respective locations.  

Notes. 

 The SRAM free memory map begins at 0x0100 as expected and without the use of the 
.org directive this is default location of the where the value is loaded. 

 An inline expression is used to calculate the target address of an sts instruction. 
 The swap instruction interchanges the high and low nibbles of a byte. 

 

 

6.6.1 Variable Use in Program Flash and EEPROM 
The ATmega328P offers just under 2 KB of SRAM. This space has to accommodate variables as well 
as the Stack which grows from the end of SRAM (0x8FF), upwards.  

If SRAM space for your variables gets tight, you can consider using Program Flash or even EEPROM 
as a source of additional storage. The .DB, .DW, .DD, and .DQ assembler directives are used to 
reserve space in Program Flash or EEPROM.   



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 57 

6.6.1.0 .DB 
(From online help)Define constant byte(s) in program memory and EEPROM. The DB directive 
reserves memory resources in the program memory or the EEPROM memory. In order to be able to 
refer to the reserved locations, the DB directive should be preceded by a label. The DB directive 
takes a list of expressions, and must contain at least one expression. The DB directive must be 
placed in a Code Segment or an EEPROM Segment. 

The expression list is a sequence of expressions, delimited by commas. Each expression must 
evaluate to a number between -128 and 255. If the expression evaluates to a negative number, the 
8-bits twos complement of the number will be placed in the program memory or EEPROM 
memory location. 

If the DB directive is given in a Code Segment and the expression-list contains more than one 
expression, the expressions are packed so that two bytes are placed in each program memory 
word. If the expression-list contains an odd number of expressions, the last expression will be 
placed in a program memory word of its own, even if the next line in the assembly code contains 
a DB directive. The unused half of the program word is set to zero. A warning is given, in order 
to notify the user that an extra zero byte is added to the .DB statement. 

6.6.1.1 .DW 
Define constant word(s) in program memory and EEPROM.  

The DW directive reserves memory resources in the program memory or the EEPROM. In order to 
be able to refer to the reserved locations, the DW directive should be preceded by a label. The DW 
directive takes a list of expressions, and must contain at least one expression. The DB directive 
must be placed in a Code Segment or an EEPROM Segment. 

The expression list is a sequence of expressions, delimited by commas. Each expression must 
evaluate to a number between -32768 and 65535. If the expression evaluates to a negative 
number, the 16-bits two's complement of the number will be placed in the program memory or 
EEPROM location. 

6.6.1.2 .DD 
Define constant double-word(s) in program memory and EEPROM.  

This directive is very similar to the DW directive, except it is used to define 32-bit (double-word). 
The data layout in memory is strictly little-endian. 

6.6.1.3 .DQ 
Define constant quad-word(s) in program memory and EEPROM. 

This directive is very similar to the DW directive, except it is used to define 64-bit (quad-word). 
The data layout in memory is strictly little-endian.  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 58 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

6.6.1.4 Example: Variable in Flash 
The example below makes use of the four assembler directives that both reserve storage space in 
Program Flash and initialize the byte contents at the same time. 

rsgcaces > AVROptimization > 2_Small_Steps > VariablesFlash.asm 

Once the VariablesFlash project is created, select the Simulator Tool and use the debugger to 
step through the code. Be sure to have the Memory: Program Flash and Processor windows open 
(Debug>Window>…)  

 

6.6.1.4.0 Questions 
1. What is meant by little and big endian? 

2. What is the AVR byte order (little or big endian)? 

2. The first executable instruction, rjmp reset, appears as 5f c0. Interpret these contents. 

3. Identify the byte address of vars ____________ 

4. What is the most efficient way express the largest possible positive value for, 

a) a double word (.DD) 

b) a quad word (.DQ) 

5. Explain Lines 19 and 20. 

6. How is the decimal value -32768 stored? Explain this. 



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 59 

6.7 Arrays 
An array declaration reserves a contiguous block of storage under a single identifier that is used to 
identify the base address of the storage block. Initialization of the elements is optional. 

The requirement that the data in an array to be homogenous enables the index of each cell to be 
used to determine the address of the element as an offset from the base address. 

6.7.0 C Array Example 
Let’s start with familiar high-level C code that declares and initializes an integer array, before 
proceeding to total the contents. A complete debugging session leaves SRAM in the state shown. 

rsgcaces > AVROptimization > 2_Small_Steps > CArrayExample1.c 

 

6.7.0.0 Comments and Observations from C Array Example 
Some notable aspects from the graphic above include the following, 

1. Line 9: The storage for the byte array A is located within SRAM and starts at @0x0100, 
immediately following the bank of 256 registers (32 GP, 64 IO and 160 Extended)  

2. Line 9: The byte order of the array matches the initialization order 

3. Line 9: The assembler maintains storage allocation to even byte boundaries. Since an odd 
number of elements were defined, it pads the storage with an extra byte (@0x0105) 

4. Line 10: Although the byte array B is declared and initialized, since the assembler recognizes 
that it is never referenced, no storage is set aside for its use. 

5. Line 11: The assembler appears to use a JIT (Just in Time) storage allocation strategy. Although 
the variable i is declared before the variable sum, only the latter’s value is known at this time, 
so it is given the next available free address, @0x0106. Stepping through the code, you’ll notice 
the updating of SRAM is suspended until the loop is finished.  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 60 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

6. Line 16: Immediately following the end of the main method, the disassembled version appears.  

 

6.7.1 Data Indirect Addressing Modes 
Beyond their use as general purpose registers, the two-byte combinations R27:R26, R29:R28, and 
R31:R30 are given aliases (X, Y, and Z, respectively), for the purpose of facilitating the addressing of 
memory. These registers serve as  16-bit address  pointers  for  indirect  addressing  of SRAM. 

   

Look back at the disassembled version of the C 
array example at the top of this page, in 
particular Lines 55 and 56. Explain what this is 
doing. 

Explain lines 57 and 58. 

Explain the body of the loop: lines 59 to 5D. 

Explain the exit of the loop: lines 5E to 61. 



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 61 

6.7.2 Assembly Example 
With a working knowledge of the high-level C array example above, we take on the assembly 
equivalent. In doing so, we optimize where we can.  

rsgcaces > AVROptimization > 2_Small_Steps > ArrayExample1.asm 

/* 
 * ArrayExample1.asm 
 *  Created: 8/18/2018 8:21:17 AM 
 *   Author: Chris Darcy 
 */  
 .DSEG    ; 
 .BYTE 6   ;reserve an even number of bytes in SRAM   
 .CSEG 
.org 0x0000 
 rjmp copy 
.org 0x0030 
A: .DB 16,2,77,40,107,0 ;define and initialize the array, A 
Aend: 
.org 0x0100 
copy:     ;.BYTE does not permit initialization 
 ldi ZL,low(A<<1) ;we frst copy from program flash to SRAM 
 ldi ZH,high(A<<1) ;lpm instruction requires Z register 
 ldi YL,low(Aend<<1) ;point Y to the end of the array 
 ldi YH,high(Aend<<1) ; 
 clr XL   ;point X to the start of SRAM 
 ldi XH,0x01  ; 
 lpm r0,Z+   ;Load from program memory and postincrement  
 st X+,r0   ;Store indirect and postincrement  
 cp ZL,YL   ;end of the array? Compare low bytes 
 brne PC-0x03  ;branch if not equal  
     ;leave X at first address after array 
 clr r18   ;zero a register for sum prior to accumulation  
 clr ZL   ;point Z to the beginning of the array  
 ldi ZH,0x01  ;SRAM address: 0x0100 
 
 ld r19,Z+  ;get the (next) element of the array 
 add r18,r19  ;add it to the running sum: sum += A[i]; 
 cp ZL,XL   ;end of the array? Compare low bytes  
 brne PC-0x03  ;branch if not at end 
 st Z,r18   ;store sum in SRAM 
wait: rjmp wait   ;done... 
 

 2.7.2.0 Comments and Observations from Assembly Array Example  
1. Comparing this assembly version with the disassembled version of the C code, identify as many 

improvements, efficiencies, or optimizations that you can. 

2.  

  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 62 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

6.8 If…then…else 
 For practice using branch instructions, consider coding an if...then…else structure in 
assembly. Specifically, place an RGB LED in pins 10 through 13 of you Arduino.  Obtain a value for 
temp and display the red LED if it’s greater than 25◦, and the blue LED if it’s less than 15◦. 
 

rsgcaces > AVROptimization > 2_Small_Steps > IfThenElse.asm 

/* 
 * IfThenElse.asm 
 * 
 *  Created: 8/8/2018 3:19:27 PM 
 *   Author: Chris Darcy 
 */ 
.def util = r16    ; 
.def led = r17    ; 
.equ COOL = 15    ; 
.equ WARM = 25    ; 
.equ temp = 10    ; 
.equ red  = 1<<PB2   ; 
.equ gnd = 1<<PB3   ; 
.equ blue = 1<<PB5   ; 
.org 0x0000 
 rjmp reset    ; 
.org 0x0100 
reset: 
 rcall initPORT   ; 
again: 
 rcall getTemp   ; 
 cpi r16,COOL   ; 
 brmi sayCool   ; 
 cpi r16,WARM   ; 
 brpl sayWARM   ; 
 rjmp again    ; 
sayCool: 
 ldi led,blue   ; 
 out PORTB,led   ;  
  rjmp again    ; 
sayWarm: 
 ldi led,red   ; 
 out PORTB,led   ;  
 rjmp again    ; 
 
initPORT: 
 ldi util,red|gnd|blue ; 
 out DDRB,util   ; 
 ret  
getTemp: 
 ldi r16,temp   ; 
 ret 
  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 63 

6.9 Loop 
A loop is a structure in which a block of statements is repeated until an event occurs. In high-level 
languages the event is coded as a boolean expression (aka. condition). 

If the number of repetitions (aka iterations) is not known in advance, the convention is to code the 
structure using the while keyword.  

If the number iterations is known in advance, the convention is to code the structure using the for 
keyword. 

Assembly languages do not have data types, per se, so a boolean expression is reduced to an 
interpretation of the state of one or more flags of the Status Register. 

6.9.0 for Loop 
Here’s an example of how you might code a for loop that iterates from 9 to 0 inclusive, mimicking 
the C statement, for(uint8_t i=0; i<10, i++). 

rsgcaces > AVROptimization > 2_Small_Steps > folLoop.asm 

/* 
 * forLoop.asm 
 * Performs 10 iterations (5 cycles) of Blinking LED on pin 13 
 * Author: Chris Darcy 
 */ 
.equ START = 0   ;lower bound of for loop 
.equ END = 10   ;upper (exclusive) bound of for loop 
.def index = r18   ;index of the for loop (lcv) 
.equ PIN13 = 1<<PB5  ;visual confirmation of iteration 
.def util = r16   ;generic utility register 
.def led = r17   ;led register for toggling purposes 
 
.org 0x0000 
 rjmp setup   ;let's use the Arduino C terminology  
.org 0x0100    ;well past the interrupt jump vector table 
setup: 
 ldi led,PIN13  ;one-time code 
 out DDRB,led  ;set PORTB bit 5 for output (pin 13) 
loop: 
 clr util 
 out PORTB,util  ;start with LED on pin 13 OFF 
 ldi index,START  ;initialize loop control variable 
forLoop: 
 cpi index,END  ;are we finished? 
 breq exit   ;if so, exit the for loop 
 eor util,led  ;body of the for loop: toggle state of pin 13 
 out PORTB,util  ;display it 
 rcall delay1s  ;admire 
 inc index   ;advance the loop control variable 
 rjmp forLoop  ;back to the top of the for loop 
exit: 
 rcall delay1s  ;admire 
 rcall delay1s  ;admire 
 rcall delay1s  ;admire 
 rjmp loop 
delay1s:    ;included in download  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 64 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

7 AALP: Arithmetic and Mathematics 
The table of Arithmetic and Logic Instructions below is taken from Atmel’s AVR 8-bit Instruction Set 
Manual. 

http://mail.rsgc.on.ca/~cdarcy/Datasheets/InstructionSetSummary.pdf  

 

7.0 Terminology: Overflow and Underflow 
Like the odometer on your car, when you go past the maximum value your display can represent 
the count simply rolls over and the counting starts again at 0. In computing, when an arithmetic 
operation on an MCU results in a value too large for the target register to contain we refer to this as 
an overflow condition.  

The interpretation of the term underflow depends on the context.  For fixed point numbers 
(integers), such as the 8-bit registers we are using, an underflow condition is said to occur when the 
value would be less than the minimum value an integer (register) can hold (0). For floating point 
numbers, an underflow condition occurs when the result of an arithmetic operation results in a 
value too close to zero to distinguish it from the same. 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 65 

7.1 Adding or Subtracting One from a Register 
Incrementing and decrementing a register, the hallmark of counting and loop control, is best 
accomplished through the dedicated instructions inc and dec.  Each instructions requires only a 
single register from r0 through r31. Overflow and underflow conditions will generate SREG flag 
responses that can be monitored with branch instructions. 

7.2 Multiplying and Dividing a Single Byte by a Power of 2 
Just as shifting the digits to the left or right of a decimal number has the effect of multiplying or 
dividing by a power of 10 so, too, does shifting bits in a binary number have the effect of doing the 
same for powers of 2. Furthermore, hardware circuits are embedded within the processor’s 
hardware to expedite the process. Not surprisingly then, the following instructions figure 
prominently in low-level multiplication and division routines. 

 

7.2.0 Multiplying a Single Byte by a Power of 2 
In this example, the intent is to multiple a single byte by four. Recognizing this operation could 
result in two-byte, 16-bit outcome, we designate a registers as the high byte of the eventual product 
and clear it at the outset. The lsl (logical shift left) instruction is used on the lower byte because it 
will shift the contents one bit to the left, a zero is shifted into the lowest bit and the highest bit is 
shifted into the carry flag. We immediately employ a rol (rotate left though Carry) instruction 
command on the high byte because it will also shift contents one bit to the left, but it will shift the 
contents of the Carry Flag into the lowest bit. Every time we shift the multiplicand to the left we are 
multiplying by two. So, to multiply by four we simply repeat this pair of instruction. 

 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 66 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

7.2.1 Dividing Two-Byte (Word) Dividend by a Power of 2 
The AVR Instruction Set does not contain a divide instruction. This must be accomplished, 
manually. Later on we’ll tackle general divisors but, for now, we’ll restrict ourselves to dividing by 
powers of 2. As with multiplication, division of binary numbers by powers of 2 can be accomplished 
by shifting bits to the right. To make things more interesting, we’ll start with the 16-bit product of 
our previous example (400) as our initial dividend. It should be apparent that we are simply 
undoing the multiplication steps. 

The lsr (logical shift right) instruction is applied to the high byte because it will shift the 
contents one bit to the right, a zero is shifted into the highest bit and the lowest bit is shifted into 
the Carry Flag. We then employ the ror (rotate right though Carry) command on the low byte 
because it will also shift contents one bit to the right, but it will shift the contents of the Carry 
Flag into the highest bit. Every time we shift the dividend to the right we are dividing it by two. 
So, to divide by four, we simply shift the entire dividend to the right two times.  

 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 67 

7.3 Byte Arithmetic 
Care must be taken when employing arithmetic operations involving single byte registers to 
appreciate overflow and underflow situations. When either condition is triggered, the C flag 
within the SREG is set to allow you to recognize and respond to it in some manner. 

7.3.0 Byte Addition with Overflow (Carry Flag) 
This example serves to demonstrate an overflow condition triggered by the addition of two 
registers in which the sum exceeded 255. The BRCS (Branch if Carry Set) instruction MUST 
immediately follow the instruction that generated the condition. Note that the lower order 8 bits of 
the sum (in A) remains accurate. Create the project, obtain the course code, and step through a 
debugging session to experience it for yourself. 

rsgcaces > AVROptimization > 2_Small_Steps > SingleByteAddition.asm 

 

7.3.1 Byte Subtraction with Underflow (Carry Flag) 
The difference between the two registers yields a value less than (0) triggering an underflow.  

rsgcaces>AVROptimization> 2_Small_Steps > SingleByteSubtraction.asm 

 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 68 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

7.3.2 Unsigned Byte Multiplication with the MUL Instruction  
The ATmega328P supports the MUL (Multiply Unsigned) Instruction. Any two registers (r0-r31) can 
be used as operands and are left unaffected as the product is placed in the register pair r1:r0. The 
instruction takes 2 clock cycles.

 

7.3.3 Signed Byte Multiplication with the MULS Instruction  
In this example, the product of two negative operands yields a positive product that replaces the 
source operands, 

 

7.3.4 Byte Division 
See Algorithms: Byte Division   



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 69 

7.4 Arithmetic with Multi-Byte Operands 
First, there are two dedicated word instructions for addition and subtraction that should be noted.  

7.4.0 Two Dedicated Word Instructions: ADIW and SBIW 
Two specialized arithmetic instructions are offered, primarily for the purpose of purpose of 
manipulating pointers (indices into arrays). Both adiw (add immediate to word) and sbiw 
(subtract immediate from word) apply a constant in the interval [0,63] to a register pair, r25:r24, 
r27:r26, r29:r28, or r31:r30. 

In the following example, an 8x8 LED matrix image defining the letter ‘A’ is placed into program 
flash. The final column in each row of the matrix contains the number of set bits in the row. The 
assembly code below runs through the rows tallying the total number of set bits and placed the sum 
in r16 (total). 

 

Lines 25 and 30 make use of the adiw instruction to point to the final column of each row. 

Debugging Note. While in a debugging session, clicking in the leftmost gray column sets a 
breakpoint. Clicking again removes it. With a breakpoint set, you can select Run to Cursor from the 
Debug > Window Menu to see the net effect of executing the instructions in between. 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 70 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

3.4.1 Preparing Multi-Byte Operands 
If we wish to perform arithmetic operations on integers greater than 255 special preparation must 
be undertaken to separate multi-byte operands into respective byte registers.  

3.4.1.0 Applicable Byte Functions 
The AVR Assembler recognizes the following set of convenient functions that return bytes 
separated from words and double words 

 low(expression) returns the low byte of an expression 

 high(expression) returns the high byte of an expression 

 byte2(expression) is the same as high 

 byte3(expression) returns the third byte of an expression 

 byte4(expression) returns the fourth byte of an expression 

These functions are to be employed to separate operands into respective registers prior to perform 
arithmetic operations. 

3.4.2 Adding Two Words 
In this example, two 16-bit constants are defined as source operands (Lines 7 and 8), before 
separating those into two register pairs, A and B (Lines 17-20). The intent is to implement the 
assignment statement, B = A+B. 

 

The Memory view confirms that after adding the low bytes of the operands with add instruction, 
followed by the addition of the high bytes of the operands with the adc instruction, the sum is 
correct (0x0909).  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 71 

3.4.3 Subtracting Two Double Words 
In this somewhat extreme example, the difference between two double-word (4-byte) operands is 
determined. Each of the operands opA and opB have their bytes separated into respective 

registers prior to implementing the equivalent of the assignment statement, A=A-B.   

 

Lines 22 through 29 separate the double word. Starting with the lower byte pairs, perform the 
first subtraction with the sub instruction. If the result is negative, the Carry flag is set. This 
explains why the subsequent subtractions of the remaining byte pairs must be undertaken with 
the support of the sbc instruction. 

  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 72 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

3.4.4 Multiplying two Words with the MUL Instruction 
 

 

 

 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 73 

8 AALP: AVR Assembly Language Programming within the Arduino IDE 

8.0 Inline Assembly 
Within the Arduino IDE, there are a number of ways to embed assembly code within your Arduino C 
code. The AVR Inline Assembly Cookbook, dating from 2002, describes a highly cryptic technique 
that is far too cumbersome for my taste, but you may find it more to your liking: 

http://www.nongnu.org/avr-libc/user-manual/inline_asm.html 

Hats off to this guy who presents a tutorial making it more palatable: 

https://ucexperiment.wordpress.com/2016/03/04/arduino-inline-assembly-tutorial-1/ 

The use of Special Function Register (SFR) macros allows one to access the registers by name 
rather than their memory-mapped addresses. 

8.0.0 Blink 
The technique below is perhaps the simplest.  

 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 74 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

8.0.1 Blink Without Delay 
This tutorial documents one user’s attempts to pursue inline assembly within the Arduino IDE: 

http://rwf.co/dokuwiki/doku.php?id=smallcpus 

The two files below are used in conjunction with the driver from Section 2.1.1 

 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 75 

 



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 76 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

8.1 Pure Assembly 
I found it too great a challenge develop pure assembly code within the Arduino IDE that mimicked 
the way I did it years ago within AVR Studio on PCs. PlatformIO appers to offer something very 
close on Macs so I’d like to give  it a shot this year. 

8.1.0 Blink 
The pure assembly Blink sketch is provided as an example within the PlatformIO Project Samples. 

 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 77 

Appendices 

A Development Environments 
A Development Environment (DE) consists of a suite of software applications that can run the 
entire range from converting a programmer’s ideas to uploading and running the machine–
executable version of those ideas to the target hardware platform or simulator. Tools could include 
a UML utility, compiler, linker, debugger, uploader, simulator, etc. 

A.0 Integrated 
An Integrated Development Environment (IDE) provides immediate access to the majority of 
development tools through and interactive interface. 

A.0.0 Arduino IDE 
https://www.arduino.cc/en/Main/Software 

 

Due to its familiarity, our first few attempts at AVR Assembly language programming will be 
undertaken within this environment.  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 78 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

A.0.1 ATMEL Studio 7 (Windows) 
http://www.atmel.com/Microsite/atmel-studio/ 

 

A.0.2 Crosspack (Mac) 
https://www.obdev.at/products/crosspack/index.html 

A.0.3 Atom and PlatformIO (Cross-Platform) 
Ethan Peterson (ACES ’18) brought this IDE to my attention and, to my mind, since it’s the closest 
match to AVR Studio for the Mac, we’ll use it for most of our investigations. 

A.0.4 WinAVR (Windows) 
http://winavr.sourceforge.net/ 

A.0.5 AVR-Eclipse 
http://avr-eclipse.sourceforge.net/wiki/index.php/The_AVR_GCC_Toolchain 



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 79 

A.1 Standalone 
Default ASCII text editors (Mac:TextEdit-Plain Text; Windows:Notepad) can be used to edit your 
code code. 

A.1.0 TextMate (Mac) 
The’ missing’ Mac Editor: https://macromates.com/ 

A.1.1 Notepad++(Windows) 
Useful programming enhancements to Notepad can be found in Notepad++ at 
https://notepad-plus-plus.org/ 

A.1.2 Programmers Notepad (Windows) 
http://www.pnotepad.org/ 

  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 80 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

B Software: GNU Toolchain 
Our study of AVR Assembly Language will make use of the Free Software Foundation’s open source 
GNU Compiler Collection (GCC). Within this broad project, tools are provided for a number of target 
platforms. Consult the link below for an overview of the toolchain available for the AVR family of 
microcontrollers: 

http://www.nongnu.org/avr-libc/user-manual/overview.html 

B.0 GCC 
“GCC focuses on translating a high-level language to the target assembly only. AVR GCC has three 
available compilers for the AVR: C language, C++, and Ada. The compiler itself does not assemble or 
link the final code. 

GCC is also known as a "driver" program, in that it knows about, and drives other programs 
seamlessly to create the final output. The assembler, and the linker are part of another open 
source project called GNU Binutils. GCC knows how to drive the GNU assembler (gas) to 
assemble the output of the compiler. GCC knows how to drive the GNU linker (ld) to link all of 
the object modules into a final executable. 

The two projects, GCC and Binutils, are very much interrelated and many of the same 
volunteers work on both open source projects. 

When GCC is built for the AVR target, the actual program names are prefixed with "avr-". So 
the actual executable name for AVR GCC is: avr-gcc. The name "avr-gcc" is used in 
documentation and discussion when referring to the program itself and not just the whole 
AVR GCC system. 

See the GCC Web Site and GCC User Manual for more information about GCC.” 

B.1 GNU Binutils 
“The name GNU Binutils stands for "Binary Utilities". It contains the GNU assembler (gas), and the 
GNU linker (ld), but also contains many other utilities that work with binary files that are created as 
part of the software development toolchain. 

Again, when these tools are built for the AVR target, the actual program names are prefixed 
with "avr-". For example, the assembler program name, for a native assembler is "as" (even 
though in documentation the GNU assembler is commonly referred to as "gas"). But when 
built for an AVR target, it becomes "avr-as". ” 

  



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 81 

B.1.0 avr-as 
The assembler. The online reference can be found here: 

https://sourceware.org/binutils/docs-2.19/as/ 

B.1.1 avr-ld 
The linker. 

B.2 avr-libc 
“GCC and Binutils provides a lot of the tools to develop software, but there is one critical component 
that they do not provide: a Standard C Library. 

There are different open source projects that provide a Standard C Library depending upon 
your system time, whether for a native compiler (GNU Libc), for some other embedded system 
(newlib), or for some versions of Linux (uCLibc). The open source AVR toolchain has its own 
Standard C Library project: avr-libc. 

AVR-Libc provides many of the same functions found in a regular Standard C Library and 
many additional library functions that is specific to an AVR. Some of the Standard C Library 
functions that are commonly used on a PC environment have limitations or additional issues 
that a user needs to be aware of when used on an embedded system. 

AVR-Libc also contains the most documentation about the whole AVR toolchain.” 

B.3 Building Software 
“Even though GCC, Binutils, and avr-libc are the core projects that are used to build software for the 
AVR, there is another piece of software that ties it all together: Make. GNU Make is a program that 
makes things, and mainly software. Make interprets and executes a Makefile that is written for a 
project. A Makefile contains dependency rules, showing which output files are dependent upon which 
input files, and instructions on how to build output files from input files. 

Some distributions of the toolchains, and other AVR tools such as MFile, contain a Makefile 
template written for the AVR toolchain and AVR applications that you can copy and modify 
for your application. 

See the GNU Make User Manual for more information.” 

B.4 AVRDUDE 
“After creating your software, you'll want to program your device. You can do this by using 
the program AVRDUDE which can interface with various hardware devices to program your 
processor. AVRDUDE is a very flexible package. All the information about AVR processors and 
various hardware programmers is stored in a text database. This database can be modified by 
any user to add new hardware or to add an AVR processor if it is not already listed  



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO 
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U – AVR OPTIMIZATION 

PAGE 82 AVR OPTIMIZATION: 2022-2023 RSGC ACES 

C AVR Assembly Reference 
The 8-bit AVR Instruction Set (AVRIS) is detailed in the following pdf: 

http://mail.rsgc.on.ca/~cdarcy/Datasheets/doc0856.pdf 

C.0 Status Register (Flags), Register and Instruction Operands 
(Included) Can be found on pp.1-2 of the AVRIS. 

C.1 Program and Addressing Modes 
(Included) Can be found on pp.3-10 of the AVRIS. 

C.2 Register (GP, I/O & Extended I/O) Summary 
 (Included) Can be found on pp.9-12 of 
http://mail.rsgc.on.ca/~cdarcy/Datasheets/ATmega328PSummary.pdf  

C.3 Frequently Used AVR-as Directives 
Directives, like many other features, are assembler-dependent (AVRASM vs AVR-as). Since we’re 
using AVR-as the applicable assembler directives can be found here: 
https://sourceware.org/binutils/docs-2.19/as/Pseudo-Ops.html#Pseudo-Ops 

C.4 Interrupt Vector Table 

 



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL 
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION 

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 83 

C.5 Instruction Set 
 

 

C.5.0 Summary of Instructions 
(Included) Can be found on pp.13-15 of: 

http://mail.rsgc.on.ca/~cdarcy/Datasheets/ATmega328PSummary.pdf  

C.5.1 Detailed Instruction Set 
See pages 11-157 of http://mail.rsgc.on.ca/~cdarcy/Datasheets/doc0856.pdf 

 


