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ACES IIIb takes our prospective engineers to the deepest accessible layer of the hardware
architecture of the 8 bit AVR microcontroller family, specifically the ATmega328P and the
ATtiny84. AVR’s Register Level and Assembly Language Programming are explored.
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Course: [CS4U (ACES IlIb)
Year: 2022-2023

Instructor: C. D’Arcy

Photo: X. Chin’s, Giant RGBW LED Matrix, Spring 2022

Video: https://www.youtube.com/watch?v=KatHkq3PDN
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ATmega328P/Arduino Quick Reference

ATmega168/328 Pin Mapping

Ardulno function Arduino function
resel (FCINT14/RESET) PC& ] a1 PCS (ADCS/SCLUPCINT132) analog input 5
digital pin 0 (RX) (PCINT16MXD) PDO = #71{] PC4 (ADCA/SDAPCINTIZ) analog input 4
digital pin 1 {TX) (PCINT17/TXD) PD1 2] PCA (ADCIPCINT 1) analog input 3
digital pin 2 (PCINT18/INTO) PD2]+ =] PC2 (ADC2/PCINT10) analog input 2
digital pin 3 (PWM) (PCINT19/0C2B/NT1) PD3 s 2] PC1 (ADC1/PCINTS) analog input 1
digital pin 4 (PCINT20/XCHK/TO) PD4 []s 23171 PCO (ADCO/PCINTS) analog input O
VCC GND
GND andlog ralarence
crystal (PCINTEXTAL1TOSC1) PBS ]9 20 VCC
crystal (PCINTTXTAL2TOSC2) PBT Jwo w{] PBS (SCK/PCINTS) digital pin 13
digital pin 5 (PWM)  {PCINT21/0C0B/T1) PD5 [ 18] PB4 (MISO/PCINT4) digital pin 12
digital pin & (PWM) (PCINT22/0C0A/AING) PDE 171 PB3 (MOSIKOC2APCINTA) digital pin 11(PWM)
digital pin 7 (PCINTZ3/4IN1) POT ]2 160 PB2 (SS/OC1BPCINT2)  digital pin 10 (PWM)
digital pin 8 (PCINTO/CLKOACP1) PBO e 15{] PE1 (OC1APCINT1) digital pin 9 (PWM)

Digital Pins 11,12 & 13 are used by the ICSP headar for MISO,
MOSL SCK connactions (Almega 168 pins 17 18 & 15} Avold low-

impadance inads on hass pins whan using the ICSP haadar

https://www.arduino.cc/en/Main/ArduinoBoardUno

ICSP
for USB interface Microcontroller ATmega328P

Operating Voltage v
Input Voltage (recommended) 7-12v

(12C) SCL
(SPI) SCK
(SPI) MISO
Interrupt 1
Interrupt 0

Input Veltage (limit) 6-20V
Digital I/0 Pins 14 (of which 6 provide PWM output)
PWM Digital I/0 Pins 6
3 Analog Input Pins 6
meaTp DC Current per /O Pin 20 mA
DC Current for 3.3V Pin S0 mA
32 KB (ATmega328P)
of which 0.5 KB used by bootloader
SRAM 2 KB (ATmega328P)
— § ¢ - - EEPROM 1KB (ATmega328P)
DC input . o e 8 s e Clock Speed 16 MHz

Flash Memory

Length 68.6 mm

Width 534 mm

(12C) sCL

Weight 5g
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ATtiny84/DDB Quick Reference

ATTiny44/84

Using Arduino as ICSP Programmer for ATTinyd4/84
-

PORT PIN
ATMECGAIZB PIN FUNC
[ N

[N o o
29 JAN 2013

ATTiny44/84
= s EEECE

C. DARCY J. DOLGIN
: ISP .

82,08 |@P|'1NTE
AT, T el o et : AT 7,07 |@P=DCT
50,06 @ mos A4,0 75,06 @D wast
Software Serial Rx/Tx SOFTWARE SERTAL 1 TS CNBOARD LED
Tx: B (White) (yF.D4,5CK)

' .
Rx: B1 (Green) n

Gnd: (Black)
e ) cND

Li.  WM17115-ND WM7877-ND

1:. > %9- one : : VIN ° ° GND
‘ 10uF  10uF O
DDB V7 2021
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Dolgin Development Board: Parts List and Encasement

PARTS TAELE

DESCRIPTION SUPPLIED.
AVR ATtiny84 MCU (Microchip) 5
IC Socket 14 Pin (CNC Tech)
USE MIMI B Connector (Molex)
3 POS RA (kinked) Conn. Hdr {Molex)
1x8 Female Header (Sullins)
10 pF Electrolytic Capacitor (short)

o -

1 pF Electrolytic Capacitor (short)

2.1 mm Power Jack (Schurter)
23 Shrouded ISP Header (Wurth)
Dolgin Development Platform Board V6 PCB

Dolgin Development Platform Case with Insets
Smm M3 Nylon Screws (McMaster-Carr)

LM7805 Voltage Regulator |

Power (Red) and GND (Black) hookup wire |

&

[ | IS NG | [ | PR | PR | R | | SN | NN | IS | [ | PR | I | 9
| =|w|w|wv|wv|wv|wv|wvv|wv|wv|wm

Live Parts Links: http://darcy.rsgc.on.ca/ACES/TEI4M /2021 /DDPv6.html
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Selection of Recent ICS4U ISPs

Seb Atkinson: Dolgin/Atkinson Dev Board v8 Jackon Shibley: Rocket Guidance System
https://www.youtube.com/watch?v=SYQoG84IRU https://www.youtube.com/watch?v=]d08QXdUqgzw

Adam Goldman: Smart Soap Dispenser Jasper Schaffer: Rubik’s Cube Solver
https://www.youtube.com/watch?v=3]jT-ef 25w https://w

Ethan McAuliffe: Photophone Ethan Peterson: Flex Equalizer
https://www.youtube.com/watch?v=s8sXL5]a8Gs http://portfolio.petetech.net/flex-equalizer/
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O Introduction

Our second course within the ACES program, ICS3U, focuses largely on an introduction to various
interfacing techniques and devices under monitoring and control of an AVR microcontroller. On the
hardware side, the Arduino UNO offers beginners easy access to the ports and peripherals of the
ATmega328P. On the software side, the Arduino IDE offered programmers an enhanced subset of
ANSI C which can reasonably be referred to as Arduino C. Your own code, coupled with open
source, off-the-shelf component libraries, formed the basis of your programs or sketches as they’re
referred to.

Our third course, ICS4U, takes engineering-minded Georgians behind the curtain, down to the lower
levels of hardware and software concepts where the efficiencies and optimization of embedded

systems are best achieved. To support your studies in this course you may wish to take a quick scan
of the video tutorial offerings Vegard Wollan, co-inventor of AVR, provides on his YouTube Channel,

https://www.youtube.com /playlist?list=PLtQdQmNK 0DQgr3A3C6AEHp6DggewClmM

0.0 Register-Level (RLP) and Assembly Language (ALP) Programming?

My preferred reasons for introducing you to this curriculum are that it elevates you to an
unparalleled level of embedded software competency. There’s (almost) nothing between you and
the CPU that is executing your code and, finally, this knowledge will give you a head start on your
university courses and advantage in your internship interviews.

Here’s the justification in a frame from an informative online slide show.

Why Learn ALP?

@ ALP helps in better understanding of the internal
architecture of MCU.

@ ALP gives direct access to all the hardware blocks in side
the MCU which may not be possible by HLP.

@ ALP helps in writing highly optimized code (shortest,
fastest program). This is very essential in time-critical and
space-critical applications.

@ Knowledge of ALP helps in detecting bugs in a machine
language program by translating the machine code back
into mnemonics using a disassembler which is a software
that performs the translation.

@ Industries engaged in the design of embedded systems
expect ALP and HLP skills in their prospective employees.

R S Ananda Murthy Assembler Programming of Atmega328P

https://www.slideshare.net/rsamurti/l10-assemblylanguageprogrammingofatmega328-

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 1
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0.1 Embedded Systems: Eliminating the Middle Man

Like most things in life, coding involves tradeoffs. The 1 Eif*

high-level C, Java, or Python programmers get to express & | 7 USlamiic

3 *
themselves in an English-like language with little to no 4 | * Created: 8/17/2018 9:07:44 AM
regard for the underlying hardware that the code willbe > | * Author: Chris Darcy
. . 6 e f
executed on. This mindset ranges anywhere from a o Sl cans b
missed opportunity to an outright problem for the 8 #define F_CPU 1608@800UL // 16 MHz
Embedded Systems engineer. 2 Suelide SUts Mideday e
18 Hint main(void)
, L . . . 11 |{
Consider the ubiquitous B1 ink sketch in C that high- 1 DDRB |= 1<<PBS;
level coders are quite familiar with. 13 while(1)
14 {
15 PORTB "= 1<<PB5;
16 _delay _ms(1608);
17 }
18 |}

rsgcaces > AVROptimization > CBlink.c @

Now, here’s a low-level assembly language view of the same B1ink sketch that is actually flashed

into your MCU,

DDRB |= 1<<PB5;
00000040 SBI ©x04,5 Set bit in I/0 register

PORTB ~= 1<<PB5;

@eeeee41 LDI R25,0x20 Load immediate
senolo source Tile: csnorsres e r BT T S T R e e S S S
oeoeee42 IN R24,8xe5 In from I/0 location
0eoeee43 EOR R24,R25 Exclusive OR
0eeeer44  OUT ©xe5,R24 Out to I/0 location

--- c:\program files (x86)\atmell\atmel toolchainlavr8 gccl\native3.4.1061\avr8-gnu-toolchain\avriinclude\util/delay.h
__builtin_avr_delay_cycles{_  ticks_dc);

Pevoer45 SER R18 Set Register

eeeeee4s LDI R19,0xD3 Load immediate

eeeeee47 LDI R24,0x30 Load immediate

00000048 SUBI R18,0x01 Subtract immediate

20000049 SBCI R19,0x00 Subtract immediate with carry
0000004A SBCI R24,0x00 Subtract immediate with carry
00000048 DBRNE PC-9x03 Branch if not equal

oeeeee4C RIMP PC+oxeeel Relative jump

oeeeeo4Dd NOP No operation

0000004E RIMP PC-0x800C Relative jump

This Disassembler view is available within your new IDE, Atmel Studio, while engaging a
debugging session (Debug > Window > Disassembler)

As can be seen, the compiler translates each high-level statement into one or more assembly
language instructions. Generic comments are even added for your convenience.

The opportunity for the embedded systems programmer is to make this even more efficient.

Teaching you how to code in assembly language is one of the goals of this final ACES course. In
doing so, we eliminate the compiler and all the assumptions it makes about your high-level
intentions to ensure what is flashed into your MCU is the most efficient code achievable.

PAGE 2 AVR OPTIMIZATION: 2022-2023 RSGC ACES
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0.2 Dolgin Development Platform

Intersection P Universal v2G

Dolgin Development Platform
2021-2022

0.3 Bit Coding Gymnastics

One difference between a painter and an artist may very well be the size of the brush. So, too, does
the beginning coder use the broad coding strokes that may accomplish the intended task but often
results in collateral damage (aka side effects) and performance inefficiency. Setting, clearing or
inverting a single, or group of, bits is an example of the fine brush strokes the register-level or
assembly-level programmer is frequently required to do. Use of the bitwise operators (not-~, and-
& or-|,and xor-") are brought to bear. Register-level examples of these tasks appear below.

0.3.0 Setting a Bit

Setting a bit means making it 1. The example below is a register-level improvement on
pinMode (13, OUTPUT) ; for the ATmega328P,

PORTB |= 1<<PB5;

0.3.1 Clearing a Bit

Clearing a bit means making it 0. The example below is a register-level improvement on
digitalWrite (7, LOW) ; for the ATmega328P,

PORTD &= ~ (1<<PD7);

0.3.2 Inverting a Bit

Inverting (aka complementing) a bit means switching it from 0 to 1 or vice versa. The example
below is a register-level approach to inverting the I/0 state of digital pin 13 for the ATmega328P,

PORTB "= 1<<PB5;

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 3
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1 AVR Memories

The AVR family of microcontrollers uses a modified
Harvard Architecture (instructions and data in
separate areas) which uses 3 types of memory:
Flash, SRAM and onboard EEPROM.

Flash
(Program Memory)

Application _
Section

FLASHEND

< 1leBits =

1.0 Flash Program Flash (ProgMem)

Instruction
memory

RAM

(Data Memory)

32 General Purpose Registers |

| 64 1/0 Registers

160 Extended 1/0 registers
e

Internal RAM

External Ram

<~ 8Bits

-

DESIGN ENGINEERING STUDIO
ICS4U - AVR OPTIMIZATION

Data
memory

1o

RAMEND

RAMEND+1

OxFFFF

EEPROM
(Data Memory)

3 "

EEPROMEND

8 Bits' ’{

Flash is non-volatile memory, which means it persists when power is removed. Its purpose is to
hold instructions that the microcontroller executes. The amount of flash can range from 512 bytes

on an ATtiny to 384K on an ATxmega384A1.

PAGE 4
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1.1 Static RAM (SRAM)

SRAM (Data Memory) is volatile memory that stores the runtime state of the program being
executed. The amount of RAM can range from 32 bytes on an ATtiny28L to 32KB on an
ATxmega384A1. In many AVR microcontrollers RAM is split into 4 subsections: General Purpose
Registers, General Purpose /0 Registers, Extended 1/0 Registers, and Internal RAM. AVR
microcontrollers have RAM on-chip but some AVRs (e.g. ATmega128) can use external RAM
modules.

Ahead. Given there is considerably more space available in Flash Program Memory that either SRAM
or EEPROM, C allows programmers to place data in the former when the latter is full. Certain steps
must be undertaken to do so but it is easily doable. We’ll discuss this technique later in the course.

ATmega328P

Figure 8.3. ATmega48P/88P/168P/328P Data Memory Map

Data Memory AVR CPU General Purpose Registers — 32x8

32 Registers 0x0000 - 0X001F Dr eoeeenenn ] D2Di Do Addr.
64 1/0 Registers 0x0020 - 0x005F RO 0x00  Most instructions can access
160 Ext I.’O Heg, 0x0060 - Ox00FF Ri 0x01  any register and complete
= 002 operation in one CPU clock cycle.
0x0100 .
|nterna| SRAM = oo There s also & 16:bit Stack Pointer.
(512/1024/1024/2048 X 8) i o
0x02FF/0x04FF/0x4FF/0x08F Bi5 0x0F | iree A
. R16 0x10 be usedas th 16-bit ind
ATtI ny84 R17 0x11 fea;\StEr:Sm p:?nl ;?:sta rr:le:-:n?:
Figure 6.2. ATtiny 24/44/84 Data Memory Map E :
R26 0x1A X Register Low-byte
Data Memory R27 0x1B X Register Highbyte
= R28 0x1C Y Register Low-byte
32 REQISterS 0x0000 - 0x001F R29 0x1D Y Register High-byte
64 I/0 Regisiers 0x0020 - 0x005F R30 0x1E  Z Register Low-byte
0x0060 Ra1 0x1F  Z Register High-byte
internal SRAM
(128/256/512 x 8)
0x0DF/0x015F/0x025F

1.1.0 32 Private General Purpose (GP) Registers (0x00-0x1F)

The lowest 32 bytes of the AVR SRAM (0x00-0x1F) are mapped to the CPU for its efficient
manipulation of data in support of assembly language instructions. These are referred to as the
MCU'’s private, general purpose registers and are consistent throughout the mega and tiny families.
As far as [ know these locations are inaccessible to the register-level programmer.

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 5
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1.1.1 64 1/0 Registers (0x20-0x5F)

Located above the GP Registers, within the AVR’s SRAM, lies a block of 64 bytes (0x20-0x5F)
referred to as the [/O Register Space. The digital I/0 Registers (aka Ports) are mapped to this area
and, understandably, vary within the MCU families depending on their offerings. There are some
consistencies maintained for compatibility.

1.1.1.0 Digital 1/O Registers (Ports) (PINx, DDRx, PORTX)

10 Ports are the most common vehicle for your AVR to interface with real world. Each of the 328P
and 84 digital pin numbers your code referenced in ICS3U are available for your review in the Quick
Reference Guides inside the front cover of this workbook. Control over each digital pin number is
accomplished through bit manipulation within three registers as shown below.

1.1.1.0.0 ATmega328P Digital I/O Registers (Ports)
A subset of the digital /0 addresses for the ATmega328P appears below.

http://mail.rsgc.on.ca/~cdarcy/Datasheets/RegisterSummary.pdf

Address Name Bit7 Bit 6 Bit5 Bit4 Bit3 Bit 2 Bit1 Bit 0 Page
0x15 (0x35) TIFRO - - = = = OCFoB OCFOA TOVO

Ox14 (0x34) Reserved - - - - - - - -

0x13 (0x33) Reserved - - - - - - - =

0x12 (0x32) Reserved - - - - - - - -

Ox11 (0x31) Reserved - - - - - - - -

0x10 (0x30) Reserved - - - - - - - -

OxOF (0x2F) Reserved - - = - - = - -

OxOE (0x2E) Reserved - - = - - - - -

0x0D (0x2D) Reserved - - - - - - - -

0x0C (0x2C) Reserved - - = - - = - -

Ox0B (0x2B) PORTD PORTD? PORTDE PORTDS PORTD4 PORTD3 PORTD2 PORTD1 PORTDO 92
Ox0A (0x2A) DDRD DDD7 DDD& DDDS DODD4 DDD3 DODD2 DDD* DDDO 92
0x09 (0x29) PIND PIND7 PINDS PINDS PIND4 PIND3 PIND2 PIND1 PINDO 92
0x08 (0x28) PORTC - PORTC6 PORTCS PORTCA PORTC3 PORTC2 PORTC1 PORTCO 91
Ox07 (0x27) DDRC = DDC6 DDCS DDC4 DDC3 DDC2 DpCt DDCO 91
0x06 (0x26) PINC - PINCE PINC5 PINC4 PINC3 PINC2 PINC1 PINCO 92
0x05 (0x25) PORTB PORTB7 PORTB6 PORTBS PORTE4 PORTB3 PORTB2 PORTB1 PORTBO 91
0x04 (0x24) DDRB D087 DDB6 DDBS 0DB4 DDB3 DDB2 DDB1 DDBO 9N
0x03 (0x23) PINB PINB7 PINBE PINBS PINB4 PINB3 PINB2 PINB1 PINBO 91
0x02 (0x22) Reserved - - - =

0x01 (0x21) Reserved - AT g 32 8 P - = -

0x0 (0x20) Reserved - me a - = -

1.1.1.0.1 ATtiny84 |/O Registers (Ports)
A subset of the 1/0 addresses for the ATtiny84 appears below.

http://mail.rsgc.on.ca/~cdarcy/Datasheets /ATtiny84Registers.pdf

0x1B (0x3B) PORTA PORTA7 | PORTA6 PORTAS PORTA4 PORTA3 PORTA2 PORTA1 PORTAO
0x1A (0x3A) DDRA DDA7 DDA6 DDAS DDA4 DDA3 DDA2 DDA1 DDAO
0x19 (0x39) PINA PINA7 PINAG PINAS PINA4 PINA3 PINAZ PINA1 PINAO
0x18 (0x38) PORTB . PORTB3 PORTB2 PORTB1 PORTBO
0x17 (0x37) DDRB ATtl ny84 DDB3 DDB2 DDB1 DDBO
0x16 (0x36) PINB PINB3 PINB2 PINB1 PINBO

PAGE 6 AVR OPTIMIZATION: 2022-2023 RSGC ACES
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Each Port has dedicated set of 3 registers mapped to it that are manipulated by your code to control
the flow of data between the AVR and its external circuitry. The registers (aka ports) are the Data
Direction Register (DDRx), and Output Register (PORTx) and Input Register (PINx), where x is
replaced with an MCU-specific uppercase letter.

PORT x

DDR x | PORT x PIN x

By virtue of its 8-bit width, each Port can govern to eight pins on the AVR. For example, the 8-bit
register PORTD, on the ATmega328P is responsible for managing the behaviour of pins PDO through
PD7. One bit in each of the three PORTD registers is dedicated to each pin. A quick glance at the
pinout diagram of the ATmega328P a few pages later reveals that PDO is actually pin 2 on the chip.

This pin maps to digital pin 0 on the Arduino UNO. A second look at the pinout diagram reveals
other interesting details. There is no PORTA on this chip and PORTC only has seven active pins (PCO-
PC6). All of these details can be reviewing the snapshot of the Register Summary on presented
earlier on page 5.

Many of the high-level Arduino C instructions you used last year manipulate the bits in these ports
in some way. For example, the pinMode (pin, mode) instruction, first determined the PORT pin
that as mapped to the Arduino pin you were attempting to manipulate before clearing (INPUT) or
setting (OUTPUT) the corresponding bit in the PORTs DDR register.

PORT High-Level Arduino C Register Level

DDRx pinMode (13, 0UTPUT) ; DDRB |= 1<<5;

PORTx digitalWrite (13, LOW); PORTB &= 1<<5;

PINx uint8 t res = digitalRead(13); uint8 t res = PINB & (1<<5)?1:0;
1.1.1.0.2 DDRx

The value of the bits within a Data Direction Register defines the /0 direction of the corresponding
digital pin: O for Input, 1 for Output. This helps explain why Input is the default.

1.1.1.0.3 PORTx
The bits within a Port’s Output Register define the voltage level for the corresponding digital pin: 0
for OV, 1 for 5V.

1.1.1.0.4 PINx
The bits within a Port’s Input Register define the voltage level read that appears on corresponding
digital pin: O for 0V, 1 for 5V.
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1.1.1.2 Stack Pointer (SPH and SPL)

The Stack is a (LIFO) data structure of significance that will
be discussed thoroughly. Similar to the SREG, its use is
essential for the correct execution of code. Not surprisingly
then, the addresses of this two-byte register is tucked just
under the SREG address. Again from the images above, the
addresses are consistent between the 328P and 84. The
Stack is an area of SRAM that expands and shrinks
dynamically during execution. The Stack Pointer (SP)
always holds the address of the top of the Stack. Initially, it
is positioned at the highest address of available SRAM and

byte

DESIGN ENGINEERING STUDIO
ICS4U - AVR OPTIMIZATION

SRAM (512)

01F

GP Registers

020
03F

Ports

05F

b4

060

25F

U HEAP

A full 512 bytes!
(0x25F-0x60+1=512)

ﬁ STACK

RAMEND

grows ‘backwards’ in the sense that as data or addresses are added to the Stack (pushed), the
contents of the Stack Pointer, decreases. As data or addresses are removed from the Stack
(popped), the contents of the Stack Pointer, increases.

An implication of the Stack’s characteristics is the number of bits that must be reserved for the
Stack Pointer. From the images above itis 10 for the 328P and 9 for the 84. The Stack Pointer then
consists of two sub-registers, Stack Pointer High (SPH) and Stack Pointer Low (SPL).

1.1.1.3 Status Register (SREG)

Each of the hundred-plus AVR assembly language instructions has the ability to reflect the result of
the operation through the setting of a set of 8 bits, referred to as flags. These flags are bundled
together in a register known as the Status Register or SREG. So critical to the correct execution of
code is the SREG that it is given a prominent address in SRAM at the top (0x5F). This address is
consistent between the ATmega328P and ATtiny84 MCUs.

Dx3F !{IIIJ.:.SF_] SREG I T H S v M z _G 10

0x3E (Dx5E) SPH = = = = = [P0 = SFD ZPE 13

030 {0x50) _5AL SPT SPE SPS SP4 sP3 SP2 SP1 SPO Ji 13

D3C {0x5C) Reserved - - - - - - - -

Ox3E (0x58) Reserved — — — - - - — —

O34 (0x5A) Reserved — — — — — — - -

D38 (050 Reserved = = = =

o8 09 | Reseves |2 - ATmega328P - -

D27 (0x57) SPMCSR SPMIE {RWWSB) SIGRD | (RWWSRE)® | BLESET | PGWRT PGERS SPMEN 78

e o e A e e R e o

Address Name Bit7 BIt6 Bit5 it4 It3 Bit2 Bit 1 BIit 0 Page
OX3F (OX5F) SHEG | T H 5 v N 7 C Page 8
x3E (0x5E) SPH - - - - - - SPa SPs Page 11
0x30 (oesD) SPL SPy SPs SPs S5p4 SP3 5Pz 5P SPo Page 11
0x3C (0x5G) OCRoB Timer/Counterd — Output Compare Register B Page 85
03 (0x5E) GIMSK INTo | PCiEs | PCEO | Page 51
0x3A (OX5A GIFR WiFo | poirr | POF0 ] Page 52
0¥39 (0N59) TIMSKo = i OCIFoR OCIEOA TOIED Page 85
0x38 (0K58) TIFRo ATt] ny84 OCFoB OCFOA TOVo Page 85

Ox3F (0x5F) SREG I | i T H i s ] v | N Z c 10

0%3E (Ox5E) SPH = = E - [ (5P1D) & 5P SPH 13

0x30 (0x50) SPL SP7 SPB SPs SP4 SP3 sp2 SP1 SPo 13
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When an assembly language instruction completes execution, the results are reflected in the Status
Register (SREG). Conditions that can be examined and registered include whether the result of a
calculation was negative (N), or whether the result of an arithmetic operation overflowed the 8 bit
destination register (V) In total, there are 8 ‘flags’ that can potentially be affected. The manner in
which the flags are affected is detailed for each instruction in the AVR Instruction Manual (a link
appears at the top of our course page). The second-to-last column in the Instruction Set Summary
indicates which flags are affected by each instruction, but not how.

Flag Description
[ Global Interrupt Enable/Disable Flag
T Transfer bit used by BLD and BST instructions
H Half Carry Flag
S N @V, For signed tests
\Y Two’s complement overflow indicator
N Negative Flag
Z Zero Flag
C Carry Flag

The purpose of leaving flags in certain state is so that next instruction can take appropriate action
based on the result of its previous instruction. This is particularly true of the branching
instructions.

| BRES &k ; Branch if Stalus Flag Set : W {SREG) = 1) ®en PC—PCek = 1 | o 12
| BRBC | 4] | Branch & Slatu Flag Clearsd H{SREG ) = O] Pan PLo-PLek = 1 | Moes 2
| BREC: [ . Braneh if Egual T 1) thats PC s PC # K+ | | [ 12
. & | Branch i Mot Equal HEeijthen PG PErke | Hors W
E BRLCS 3 ! Branch if Carey Sl WiCs i} PanPC— PC+k+1 I Miwui 2
IUH:;'; L] :U-rllfhfcli'p'l;il'w =0 Fan PL - PC ok & 1 IN't-'\-l Ly
1 BRSH Ly ' Branch il Same of Hgher HiCm(jFenPC o PC+k+ 1 | L 1F
_HF!'.':," k | Branch i Loswr WiCe ijan PC e PC ks Mora Lo
IEN-":'-'I [ !Bcu';d‘n’h'ﬂ.ri l|1_h|J!i:‘--:"l-?-‘ﬂl PC+ik+1 :Nu'q 12
| bR k | Branch if Mus | N ) e P o PGk 1 | Mora -]
| BRGE L . Branch if Grewter of Edunl, Shgned 1 i {H @ W' ) then PC o PC #)o# | | o 1z
LT & | Branch i Lews Than Zeeo. Segred i [ @ e 1) then PG o PG s e Hore ]
: BRHS [ : Branch i Hall Cary Flag St | WiH= i} PC - PC+k+ 1 : Mesai 1z
| BRG 0 | Branch i Haif Carry Flag Cleansd [ = ) Tren PG - PG Rk e 1 | More i
| BRTS K | Branch @ T Flag Set H{T=1)then PG« PC ok +1 | Meew vz
| BRTC k | Branch i T Flag Caared AT thenPC - PCaka ) | Mora ]
| BRVE L i Branch i Owverow Flag & St WiVe jthen PC = PC+R+1 | Mo 1z
| BRve 5 | Branch i Cvarow Flag o Sleansd o[V = ) ey P o P w1 | Mo -
| BRIE K | Branch if Inbemups Enasbled Wilm1}Pen PCo PC+#i+1 | [ 2
| R b | Beansh # interropt Disablied H{i=0ltwnPC— PO eke1 [ Homa BN

http://mail.rsgc.on.ca/~cdarcy/Datasheets/InstructionSetSummary.pdf
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1.1.2 160 Extended |/O Registers (0x60-0xFF)

To accommodate the broader capabilities in the ATmega family over the ATtiny family, an
additional 160 bytes of SRAM are set aside in the mega family for the extended 1/0 register set. This
might seem like an unusual number, but when taken together with the previous address ranges, the
total amounts to a familiar 256 bytes of reserved SRAM (32+64+160=256).

(0x8C) Reserved - | = [ - [ = [ = | = | = I =

(0=EB] QCR1BH Timer/Counter! - Qutput Compare Register B High Byte 135
{OxBA) QCRIBL Timer/Counter! - Output Compare Register B Low Byte 135
(0x89) OCR1AH Timer/Counter! - Output Compare Register A High Byle 135
{DxB8) QCR1AL Timer/Counter! - Output Cormpare Regisler & Low Byle 135
{0%87) ICR1H Timer/Counter! - Input Capture Register High Byte 135
(DBE) ICR1L Timer/Counter! - Input Capture Register Low Byte 135
{0xB5) TCHNT1H TimerCounler - Counter Ragister High Byte 134
[ DB ) TCNTIL Timer/Counter1 - Counter Register Low Byte 134
[OxE3) Reserved - - - - - - - -

{082y TCCRIC FOC1A FOCAB - - - = - - 134
(DB )y TCCR1E ICNC1 ICES1 - WGMI13 WGEM12 C§12 Cs11 CS510 133
{0x80) TCCR1A COoM1A1 COM1AD COM1B1 COMIBO e = WGM11 WGEM1D 131
{0XTF) DIDR1 - - - - - = AINTD AINOD 236
10xTE} DIDRD — — ADCSD ADCAD ADCID ADC2D ADCID ADCOD 251
[0=70} Reserved — — - — — — - —

(0x7C) ADMUX REFS1 REFS0 ADLAR = MUX3 MUX2 MLUX1 MUX0 248
(0x7B) ADCSRB - ACME - - - ADTS2 ADTS1 ADTS0 251
(0xTA) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPET ADPSD 249

Consult Chapter 36, Register Summary, of the ATmega328P datasheet to see the specific details of
address mapping.

1.1.3 SRAM (Heap and Stack) (0Ox??-RAMEND)

With the lowest SRAM addresses (varies between families) bg(‘;: SRAM (512)
set aside for dedicated Register use as described above, the vl GP Registers
remaining space is free for use by your code to influence ggg T

and exploit dynamically. The amount of free space i B
remaining depends on your MCU. The highest address can 060 U iy

be determined programmatically by accessing a predefined

constant typically included in the toolchain as RAMEND. A #okd S Byt

(0x25F-0x60+1=512)
Although your code is free to use the entire range of SRAM
between the end of the Extended Register section and 25F ﬁ STACK AR
RAMEND, there are additional transparent code

behaviours you must be aware to ensure correct code performance. The concepts are generally
referred to as the heap and the system stack.

1.1.3.0 Heap

The heap is the preferred area of SRAM that the assembler looks to, to satisfy the bytes of storage
required by your global variable declarations (dynamic memory allocation is beyond the scope of
this course). Generally, the byte range of the heap extends from just above the Extended Register

set and continues as required.

Should your code attempt to declare an array of bytes required storage that exceeded the .variables
that you declare are stored here, as are parameters passed to functions and local variables declared
within them.

PAGE 10 AVR OPTIMIZATION: 2022-2023 RSGC ACES



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION

1.1.3.1 (System) Stack

Stack

Used for storing temporary

data

= Local variables

= Return addresses after
interrupts or subroutine

Implemented as growing from

higher to lower address

= Initial pointer set equal to last

address of SRAM Ox1FFD
» Push — decreases SP Ox1FFE
- Pop —increasesSP  ¢p — 5 Ox1FEE
1.2 EEPROM

EEPROM (Electronically Erasable Programmable Read Only Memory) is non-volatile memory which
is used to store data. The most common use is to store configurable parameters. The amount of
EEPROM can range from 32 bytes on an ATtiny to 4KB on an XMega.

EEPROM is a good place to log data from sensors, store values as a Lookup Table (LuT) for faster
performance by avoiding computationally-intense calculations (trig values), or data such as font
maps, to name a couple of common uses.

.Reference: http://www.protostack.com/blog/2010/12 /avr-memory-architecture/
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1.3 Predefines (.h and .inc)

The specific register names and corresponding
addresses are available for use in your register-level
Arduino C programs in the form of a header file
(.h). Selecting the target board within the Arduino
IDE results in the correct files of predefines being
included in the toolchain, automatically. The files of
predefines are iom328p.h and iotnx4.h for the
UNO and DDB, respectively. You can explore the
contents of these files by following the links at the
top of our course page.

When programming in Assembly Language within
Atmel Studio 7, the appropriate file of predefines
(-inc) are made known to your project when you
select the target board in the project creation
dialog sequence.

Once you complete a successful build of your
assembly language project the predefine include
file (.inc) will appear in the Dependencies section.
Click to open to examine its contents.

DESIGN ENGINEERING STUDIO
ICS4U - AVR OPTIMIZATION

@ Registerl evelTrafficLight - iom328p.h | Arduino 1213 - o X
File Edit Sketch Tools Help

lam328p.h

2 =

(SN Ne)]

PINB SFR IO8(0x03)
PINBO
PINB1
PINB2
PINB3
PTNB4
PTNB5
PTNB6
PINB7

g W

(&)

oG

0 - o

58 #define
59 #define
60 #define
61 #define
62 #define

&

N o0 W N o

59 ; Definitions marked "MEMORY MAPPED"are extended I/O ports +
60 ; and cannot be used with IN/OUT instructions =

61 .equ SREG = 0x3f ||
62! .equ SPL = 0x3d
63 .equ SPH = 0x3e
64 .equ OCROB = 0x3c
65 .equ GIMSK = 0x3b
66 .equ GIFR = 0x3a
67 equ TIMSKO = 0x39
68 .equ TIFRO = 0x38
69 .equ SPMCSR = 0x37
70 .equ OCROA = 0x36
71 .equ MCUCR = 0x35
72 .equ MCUSR = 0x34
TCCROB = 0x33
TCNTO = 0x32

NSCCAT. = 0w

Solution Explorer

@ o-am| £ = a0

Search Solution Explorer (Ctrl+;)

i Solution 'ADCBasics' (1 project)
4 | ADCBasics
4 | 7 Dependencies
‘% prescalersBd.inc
] tn84def.inc
P =4 Labels
P [=d Output Files
ad| main.asm

PAGE 12
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2 Interrupts

MCUs are designed with the ability to immediately stop executing some code and address a service
alert from a secondary source (e.g. sensor, timer, button, etc.) they are responsible for. Software
that is configured in this manner is called interrupt-driven. The list of alerts to which 8-bit AVR
MCUs can respond are summarized within the respective datasheets in an Interrupt Vector Table.

2.0 Interrupt Vector Table (IVT)

An Interrupt Vector Table (aka, Interrupt Jump Table) is a dedicated set of bytes at the beginning of
Program Flash Memory reserved for programmers to populate with code addresses of their
functions to execute when specific events occur. These user functions are best referred to as
Interrupt Service Routines (ISRs). When correctly configured, the system automatically saves the
current contents of the Program Counter (on the Stack), goes to a location within the IVT and loads
the address it finds there into the Program Counter, thereby transferring control (aka jump) to your
ISR. When your ISR finishes execution, the previously saved address is retrieved from the top of the
Stack and execution continues as it did prior to the event.

2.0.0 ATmega328P IVT
12.1 Interrupt Vectors in ATmegad48A and ATmegad8PA

Table 12-1.  Reset and Interrupt Vectors in ATmegad8A and ATmegad8PA

Vector No. Program Address Source Interrupt Definition

1 0x000 RESET External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset
2 0x001 INTO External Interrupt Request 0

3 0x002 INT1 External Interrupt Request 1

4 0x003 PCINTD Pin Change Interrupt Request 0

5 0x004 PCINT1 Pin Change Interrupt Request 1

6 0x005 PCINT2 Pin Change Interrupt Request 2

7 0x006 WDT Watchdog Time-out Interrupt

8 0x007 TIMER2 COMPA Timer/Counter2 Compare Match A
9 0x008 TIMER2 COMPB Timer/Counter2 Compare Match B
10 0x009 TIMER2 OVF Timer/Counter2 Overflow

11 0x00A TIMER1 CAPT Timer/Counter1 Capture Event

12 0x00B TIMER1 COMPA Timer/Counter! Compare Match A
13 Dx00C TIMER1 COMPB Timer/Coutner1 Compare Match B
14 0x00D TIMER1 OVF Timer/Counter1 Overflow

15 0x00E TIMERO COMPA Timer/Counter) Compare Match A
16 0x00F TIMERDO COMPB Timer/Counter) Compare Match B
17 0x010 TIMERO OVF Timer/Counterd Overflow

18 0x011 SPI, STC SPI Senal Transfer Complete

19 0x012 USART, RX USART Rx Complete

20 0x013 USART, UDRE USART, Data Register Empty

21 0x014 USART, TX USART, Tx Complete

22 0x015 ADC ADC Conversion Complete

23 0x016 EE READY EEPROM Ready
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2.0.1 ATtiny84 IVT

Understandably, MCUs within the tiny family offer fewer resources, hence a smaller vector table.

Interrupt Vectors

Table 10-1. Reset and Interrupt Vectors

Vector No. Program Address Source Interrupt Definition
1 0x0000 RESET E:tli;'nde::: ;Ir[;: E:';éttw'.l'-:er--:]n reset, brown-out reset,
2 0x0001 INTO Extemnal interrupt request 0
3 0x0002 PCINTO Pin change interrupt request 0
4 0x0003 PCINT1 Pin change interrupt request 1
& 0x0004 wWDT Watchdog time-out
6 0x0005 TIMER1 CAPT Timer/Counter] capture event
7 0x0006 TIMER1 COMPA Timer/Counter1 compare match A
8 Ox0007 TIMER1 COMPB Timer/Counter1 compare match B
9 0x0008 TIMER1 OVF Timer/Counterd overflow
10 0x0009 TIMERO COMPA Timer/Counterd compare match A
1 0x000A TIMERO COMPB Timer/Counterd compare match B
12 0x000B TIMERO OVF Timer/Counterd overflow
13 0x000C ANA_COMP Analog comparator
14 0x000D ADC ADC conversion complete
15 0x000E EE RDY EEPROM ready
16 O0x000F USI_START USI START
17 0x0010 Usl_OVF US| overflow

2.1 Avoiding Conflicts with the IVT in Assembly Language

Given its critical role in the successful execution of interrupt-driven applications, the IVT is
expected to appear at the very start of Program Flash, addresses 0x0000-0x????. To ensure your
assembly language data and code avoids this range, use of the . org directive is encouraged. The
predefine INT VECTORS SIZE supports a degree of MCU-compatibility, as in,

24) ; CODE Segment (default)

23] .cseg ;locate for Code Segment (PROGRAM FLASH)

26 = **x** TNTERRUPT VECTOR TABLE ****x**xx*fx*dkAxhxFdrrdhddrAxdd AT AxFrxdrrdrrddrrxx%

27 Loorg 0x0000 ;start of Interrupt Vector Table (IVT) aka. Jump Table
28 rijmp reset ;lowest interrupt address == highest priority!

29| .org ADCCaddr ;External Interrupt Regquest 0 (predefined in tn84def.inc)
30 rijmp ADCComp ;ISR for ADC ADC Conversion Complete interrupt

31] .oxg INT VECTORS SIZE ;position program data just beyond the IVT

2.1.0 Interrupt Priorities

The order of the interrupt sources within the vector table is significant. Should two or more
interrupts occur simultaneously, the sources are queued, with the lower address given priority.

A natural consequence of this is that a request to reset the MCU is awarded the highest priority.
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2.2 Reset Interrupt

A Reset event results in the clearing of (set to 0) the
Program Counter. Your code then has the responsibility of
placing a jump instruction at address 0x0000 of the first
executable instruction.

A Reset event can be triggered in a number of ways
depending on the MCU. The most common is the power on
reset. Every time you reconnect power to the MCU a Power
On Reset event is generated.

Alternatively, whenever a falling edge (5V—0V) is presented on pin 1, such as the momentary
button your wired into your breadboard Arduino is Grade 11, you generate an External Reset
event.

Another common Reset source is the WatchDog Timer. In this way your software can generate a
WatchDog Reset when a specific event occurs or at periodic intervals.

2.2.0 MCUSR (Reset) Register

The source of a reset can be determined by examining the bits (flags) within the MCU Status
Register (MCUSR). Unlike many other registers the address and bits with the register are the same
for the mega328P and tiny84 MCUs.

9.10.1 MCUSR - MCU Status Register

The MCU status register provides information on which reset source caused an MCU reset.

Bit 7 6 5 4 3 2 1 0

ox3axs4) f - | - | - | - | WDRF | BORF | EXTRF | PORF | MCUSR
Read/Write R R R R RW  RW RW  RW

Initial Value 0 0 0 0 See Bit Description

2.2.1 Rotary Encoder on RSGC ACES Breakout Board
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2.3 External Interrupts

Next the Reset interrupt, an external interrupt event can be configured to trigger an immediate
response. The mega328P has two pins (INTO and INT1) capable of responding to a changing edge,
and the tiny84 (INTO) just one.

2.3.0 ATmega328P External Interrupt Registers

13.2 Register Description

13.2.1 EICRA - External Interrupt Control Register A

The Extemal Interrupt Control Register A contains control bits for interrupt sense control.

Bit 7 i} 5 4 3 2 1 o}
i0xEg) | I N N I U s
ReadWrite R R R R RwW W RW RW
Initial Value i} o o a i 3} i} o
Table 13-2. Interrupt 0 Sense Control
ISCOH ISC00 Description
] 0 The low level of INTD generates an interrupt request.
i 1 Any logical change on INTO generates an interrupt request.
1 0 The falling edge of INTO generates an inferrupt request.
1 1 The rising edge of INTD generates an interrupt reguest.

13.2.2 EIMSK - External Interrupt Mask Register

Bit 7 i 3 4 3 2 1 0

1D (x20) - | - | - | - | - | - | INTT ] INTD § EIMSK
ReadWit= [ R ] R R AW RV

Initial Walue [1] 0 0 0 ] ] ] 0

= Bit 0 — INTO: External Interrupt Request 0 Enable

When the INTO bit is set (one) and the |-bit in the Status Register (SREG) is set (ong), the external pin interrupt
is enabled. The Interrupt Sense Conirold bits 1/0 (1ISC01 and 1SC00) in the External Intermupt Control Register A
(EICRA} define whather the external interrupt is activated on rising andfor falling edge of the INTO pin or level
sensed. Activity on the pin will cause an interrupt request even if INTO is configured as an output. The
corresponding interrupt of External Interrupt Request 0 is executed from the INTO Interrupt Vector.

2.3.1 ATtiny84 External Interrupt Registers

Interrupt Sense Control bits (ISCO1 and ISC00) for the ATtiny84 defines the same edges as the
ATmega328P.

11.2.1 MCUCR - MCU Control Register

The extemal interrupt control register A contains control bits for intemrupt sense contral.

Bit T i 5 4 3 2 1 0
0x35(0x55) | BODS [ PUD | SE | SM1 | SM0 | BODSE [ ISC01 | ISC00 | mcucr
Read/Write RAW RW RAW RIW RIW RW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

11.2.2 GIMSK - General Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0
0«38 (oxse) [~ - | INTO | PCIE1 | PCIED | - | - | - | - ] GIMsK
Read/Write R RW  RW Riw R R R
Initial Value 0 0 0 0 0 0 0 0
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2.4 Pin Change Interrupts

By this point you are aware that your MCUs can sense and respond to external events through the
use of the External Interrupt System (INTn). The good news is that their corresponding ISCnn bits
can configured to monitor low, logical, falling, or rising signals. The downside is that their
application is limited to two specific pins on the ATmega328P and only one on the ATtiny84.

A useful alternative to External Interrupts for sensing and responding to external signal events are
Pin Change Interrupts that are applicable to any digital pin! This means that your ATmega328P
can perform a similar function on all 23 pins and the ATtiny84 on all 12. However, as is always the
case, the downside is that, as its name implies, only a change (falling or rising) signal edge triggers
the interrupt.

2.4.0 ATmega328P Pin Change Interrupt Control Register

13.2.4 PCICR - Pin Change Interrupt Control Register

Bit 7 6 5 4 3 2 1 0
(0x68) [ - 7 -] -7 -7 - "] pCE2 | PCIE\ | PCIE0 | PCICR
Read/Write R E m 3 R RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

2.4.1 ATtiny84 General Interrupt Mask Register

11.2.2 GIMSK - General Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0
ox38 (oxs8) [~ - | INTO | PCIE1 | PCIEO | - | - | - | - ] GIMSK
Read/Write R RMW RAW Riw
Initial Value 0 0 0 0 0 0 0 0
2.4.2 ATtiny84 Pin Change Mask Registers
11.2.4 PCMSK1 - Pin Change Mask Register 1
Bit 7 6 5 4 3 2 1 0
ox20(0x40) f - | - | = | = [ PCINTI1 [ PCINT10 | PCINTS | PCINTE | PCMSK1
Read/Write R R R R R/W RW RW RAW
Initial Value 0 0 D D 0 0 0 0
11.2.5 PCMSKO - Pin Change Mask Register 0
Bit 7 B 5 4 3 2 1 0
Dx12 (0x32) | PCINT7 | PCINTE | PCINT5 | PCINT4 | PCINT3 | PCINT2 | PCINT1 | PCINTO | PCMSKO
Read/Write R/W R/W RIW RW R/W R/W R/W R/W
Initial Value 0 0 D D D 0 0 0

AVR OPTIMIZATION: 2021-2022 RSGC ACES PAGE 17



ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO
ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - AVR OPTIMIZATION

3 Timer/Counters

The heartbeat of a functioning MCU is either an internal or external clock source, aka oscillator
(e.g. crystal, RC, etc.). The source of the oscillation can be an external crystal (attached to MCU pins
9 and 10) or an internal oscillator. Every tick of the clock source (up to 20 MHz) is registered as the
MCU’s free-running clock (clkio) that runs in the background. Each AVR MCU has multiple
Timer/Counters. Each Timer/Counter has a suite of registers that can be programmed to produce
into various waveform shapes from the clock. In addition to its role in coordination around a
common beat, Timers these peripherals can also count pulses. Your first exposure to the value of
counting may have been your Grade 10 Counting Circuit project that used a NAND-Gate Oscillator
as a clock source that was fed into a 4017 decade counter to monitor the ‘ticking’. Specific registers
are set aside within each Timer/Counter for the accumulation of clock source ‘ticks’.

Of the many uses a Timer/Counter can be put to, pulse width modulation (PWM) was likely your
earliest and most common Grade 11 application. Arduino C’s analogWrite (pin, duty) function
exploits the uses of the respective Timer/Counter associated with the pin requested.

3.0 ATmega328P
The ATmega328P has three Timer/Counters ATMEGA328P-PU Chip to Ardulrto Pin Mapping
Arduino function Arduino function
available for use. For each of the timers two digital S i  TIDree] g
pins can be directly influenced by register Gt | pamwmmet  sDregeecwme ssmgeee
behaviour, allowing for maximum efficiency, as e e D rss e
cC ccyr 2{] GND Gl
ShOWIl to the l"lght éno (:ND z-AREF analog re(ele':\c:
crystal (PCINTE/XTAL1/TOSC1) PBS(] o] AVCC vee
rstal PCINTZ/XTAL2/TOSC2) PB7 (Jo PBS (SCK/PCINTS) ital pin
. :;u: pins H’WM)( I(:CIII:(T’:! 1;5*05 " " : PB4 :MISOIP(I::‘NT:) :;w zm ::
Care must be taken not to inadvertently overlap il pin (PWA) (m.m&&,mu P (MOSJBSTRPCINTS) cialpin 11P¥i
X X ) . digital pin 7 (PCINT23/AINY) PO7 (s 16} PB2 (SYOCIBJPCINT2)  digital pin 10 (PWM)
their use. Here is a brief table of common functions  suens PeiTockoncen Peocf  wpper [GCTAPOINTY)  dgtalpnd (Pua
and libraries that rely on the availability of the gt P 11124 13w sty P 52 ecer b MO

MOSI SCK connections (Amega 163 pins 17,18 & 19) Avod low:
Impaciance loads on thess pins when using the ICSP header

timers for their correct execution.

3.0.0 ATmega328P Timer/CounterO Modes

Table 15-8. Waveform Generation Mode Bit Description

Timer/Counter
Mode of TOV Flag
Mode WGM02 WGMO1 WGMOO Operation Set on
0 0 0 0 Normal OxFF Immediate MAX
1 0 0 1 SonBl s OXFF TOP BOTTOM
Correct
2 0 1 0 cTC OCRA | Immediate MAX
3 0 1 1 Fast PWM OXFF | BOTTOM MAX
4 1 0 0 Reserved - - -
4 1 0 1 gﬂ"gaphase OCRA TOP BOTTOM
B 1 1 0 Reserved - - -
7 1 1 1 Fast PWM OCRA | BOTTOM TOP
Notes: 1. MAX = 0xFF

2. BOTTOM = 0x00
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3.0.1 ATmega328P Timer/Counterl Modes

Table 16-4. Waveform Generation Mode Bit Description'"

WGM12 WGM11  WGM10 Timer/Counter Mode of Update of  TOV1 Flag
Mode WGM13 (CTC1) (PWM11) (PWM10) Operation TOP OCRixat Seton
0 0 0 0 0 Normal OxFFFF Immediate MAX
1 0 0 0 1 PWM, Phase Correct, 8-bit | 0xOOFF | TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit | OxO1FF | TOP BOTTOM
3 0 0 1 1 PWM, Phase Correct, 10-bit | 0x03FF | TOP BOTTOM
4 0 1 0 0 cTC OCRIA | Immediate | MAX
5 0 1 0 1 Fast PWM, 8-bit Ox00FF | BOTTOM | TOP
6 0 1 1 0 Fast PWM, 9-bit O0x01FF | BOTTOM | TOP
7 0 1 1 1 Fast PWM, 10-bit O0x03FF | BOTTOM | TOP
8 1 0 0 0 g\:;\:?g,cfhase ant Frequency’ | jspy BOTTOM | BOTTOM
9 1 0 0 1 z\;\;’:\g,dPhase and Frequency | nopia | BOTTOM | BOTTOM
10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM
1 1 0 1 il PWM, Phase Correct OCR1A TOP BOTTOM
12 1 1 0 0 cTC ICR1 Immediate | MAX
13 1 1 0 1 (Reserved) - - -
14 1 1 1 0 Fast PWM ICR1 BOTTOM | TOP
15 1 1 1 1 Fast PWM OCR1A | BOTTOM | TOP

Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality
and location of these bits are compatible with previous versions of the timer.

3.0.2 ATmega328P Timer/Counter2 Modes

Table 18-8.  Waveform Generation Mode Bit Description

Timer/Counter

Mode of
Mode WGM22 WGM21 WGM20 Operation
0 0 0 0 Normal OXFF | Immediate MAX
1 0 0 1 PWM. Phase 0xXFF TOP BOTTOM
Correct
2 0 1 0 CTC OCRA | Immediate MAX
3 0 1 1 Fast PWM OXFF | BOTTOM MAX
4 1 0 0 Reserved _ _ _
5 1 0 1 b lies OCRA TOP BOTTOM
Correct
6 1 1 0 Reserved _ - _
7 1 1 1 Fast PWM OCRA | BOTTOM ToP

Motes: 1. MAX=0xFF
2. BOTTOM= 0x00
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3.0.3 ATmega328P Pulse Width Modulation (PWM) with AnalogWrite()

Arduino C's analogWrite (pin, uint8 t) function generates a PWM signal on the back of an
MCU’s Timer/Counter. Through the use of the second parameter users can control the duty cycle of
the signal. Since users can not control the frequency of the PWM waveform the function is not
suitable in all cases where a digital approximation of a voltage level is required (e.g. servo motor
horn positioning).

The table below lists the default frequencies associated with using the

analogWrite (pin,uint8 t) on each of the respective pins of the ATmega328P, as well as the
other library functions that rely on these respective Timer/Counters. Users should be aware of the
potential conflicts that can arise.

Timer | Bits Pins analogWrite Frequency Dependent Functions
0 8 56 ~980 Hz delay (), millis (), micros ()
1 16 9,10 ~490 Hz Servo Library
2 8 3,11 ~490 Hz Tone Library

Readers are encouraged to explore Ken Shirriff's remarkable blog, “Secrets of Arduino PWM” at,
http://www.righto.com/2009/07 /secrets-of-arduino-pwm.html

3.0.3.0 Scope Trace of an AnalogWrite() PWM Waveform

Below is one of my favourite images captured on our scope by Tim Morland (ACES 18, Queen’s '23).

[0 11028 oG04 110 Wed Ape 1] 125605205 Captured by T. Morland

20005/ 20008

Bdsth

+Duy[1} req(? OZ30FM
25 .0kHz ] 30.011Hz =000 RPM Apr 11, 2018

PAGE 20 AVR OPTIMIZATION: 2022-2023 RSGC ACES



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION

3.0.4 Atmega328P Timer/Counterl Registers
16.11 Register Description

16.11.1 TCCR1A - Timer/Counter1 Control Register A

Bit /4 6 5 4 3 2 1 0

(0x80) I COM1A1 I COM1A0 | com1B1 | COM1BO ] - I - I WGM11 ] WGM10 I TCCR1A
Read/Write RW RW RW RW R R RW RW

Initial Value 0 0 0 0 0 0 0 0

16.11.2 TCCR1B - Timer/Counter1 Control Register B

Bit 7 6 5 4 3 2 1 0
(0x81) ICNC1 | ICES1 | - | wem13 | wGM12 | Cs12 | Cs11 [ CS10 TCCR1B
Read/Write RIW RIW R RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
16.11.3 TCCR1C - Timer/Counter1 Control Register C
Bit 7 H 5 4 3 2 1 0
(0x82) rF'o'cT A-|-F'o'c'1'B [ -1 -1 -"T7 =-"T"=-"T "= "1 Ttccric
Read/Write RIW RIW R R R R R
Initial Value 0 0 0 0 0 0 0 0
16.11.4 TCNT1H and TCNT1L - Timer/Counter1
Bit 7 B 5 4 3 2 1 0
s
(0x85) TCNT1[15:8) TCNT1H
(0x84) TCNTA[7:0] TCNTIL
Read/Write RIW RIW RIW RIW RIW RW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
16.11.6 OCR1BH and OCR1BL - Output Compare Register 1 B
Bit 7 6 5 4 3 2 1 0
(0x8B) OCR1B[15:8] OCR1BH
e
(0x8A) OCR1B[7:0] OCR1BL
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
16.11.7 ICR1H and ICR1L - Input Capture Register 1
Bit 7 6 5 4 3 2 1 0
—————
(0x87) ICR1[15:8] ICR1H
(0x86) ICRA[7:0] ICRIL
Read/Write RIW RW RIW RW RW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
16.11.8 TIMSK1 - Timer/Counter1 Interrupt Mask Register
Bit 7 6 5 4 3 2 1 0
(0x6F) - | = | ICIEY [ = | = [ OCIE1B | OCIE1A | TOIE1 I TIMSKA1
Read/Write R R RIW R R RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
16.11.9 TIFR1 - Timer/Counter1 Interrupt Flag Register
Bit 7 6 5 4 3 2 1 0
e as) [ = | T Icrt | - ] - ] OCFiB | OCFIA ]| TOVi | TIFR1
Read/Write R RIW R RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
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3.0.5 Atmega328P Timer/Counter 1 Normal Mode 0

An example of the simplest programmable Timer/Counterl mode would be Mode 0: Normal
Mode. In this configuration,

1. Ticks of the clock sources are accumulated in its 16-bit (216) 2-byte register pair:
TCNT1H:TCNT1L.

2. When the count reaches the top (65535 = 0Xffff), an overflow interrupt is generated

3. The interrupt can be dealt with in at least 3 ways: ignored completely, handled in software
or responded to in hardware for example, with the OC1A or OC1B pins connected.

4. The counter simply rolls over and resumes counting from 0x0000.

5. A prescaler may be applied to the clock to map the counting source to a reduced frequency.

6. Asan example, consider Timer/Counter 1 in Normal Mode 0 under a 16 MHz crystal clock
source with a prescaler of 256. The overflow frequency would be 224/28/216 = 1 Hz.

TIMER1: Normal Mode (OC1A/OC1B disconnected)
TCNT1 A Interrupt Request: TIMER1_OVF_vect

OXFFFF (MAX) == e e -———

0x0000 (BOTTOM)

~v

£y

Table 13-9. Clock Select Bit Description

| CS02 | CS01 | CS00 |Description

No clock source (Timer/Counter stopped)

clky,o/(no prescaling)

clkyo/8 (from prescaler)

clk,o/64 (from prescaler)

clky;/256 (from prescaler)

clky/1024 (from prescaler)

External clock source on TO pin. Clock on falling edge.
External clock source on TO pin. Clock on rising edge.

- | - w2 o2
= wlololal=|lol o
= Q=0 =10| =2

If external pin modes are used for the Timer/Counter0, transitions on the TO pin will clock the counter even if the pin is
configured as an output. This feature allows software control of the counting.

You'll be shown how different techniques in class for #defineing and #includeing these type of
bit sequences depending on your preferred toolchain.
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3.1 ATtiny84

From it inception, our RSGC ACES Dolgin Development
Platform hosts the AVR ATtiny84 as its preferred MCU. The
JLCPCB rendering of V7 appears to the right. This
microcontroller was selected for a variety of reasons not
the least of which was DAMellis/Konde ATtinyCore suite of
Arduino IDE software supports, its compact footprint (14
pins) and having just enough peripheral features (External
Interrupt, two Timer/Counters, ADC, Watchdog etc.) to
support a wide range of applications.

You are encouraged to undertake a visual comparison of
the features attached to each of the pins in the official
diagram below and how the DDB breaks out the pins to the
headers on our PCB to the right.

In the diagram below, the two pins of the 8-bit
Timer/Counter0 are highlighted in red. As well, the two
pins of the 16-bit Timer/Counter1 are highlighted in green.

ADVANCED COMPUTER ENGINEERING SCHOOL

ICS4U - AVR OPTIMIZATION
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3.1.0 ATtiny84 Timer/CounterO Modes
Table 13-8. Waveform Generation Mode Bit Description
Timer/Counter Mode of Update of TOV Flag
Operation OCRxX at Set on'"
0 0 0 0 Normal 0xFF Immediate
1 0 0 1 PWM, phase comect OxFF TOP BOTTOM
2 0 1 0 CTC OCRA Immediate MAX
3 0 1 1 Fast PWM OxFF BOTTOM MAX
4 1 0 0 |Reserved - = =
5 1 0 1 PWM, phase correct OCRA TOP BOTTOM
6 1 1 0 Reserved - -
T 1 1 1 Fast PWM OCRA BOTTOM TOP
Note: 1. MAX=0OxFF '
BOTTOM = 0x00
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3.1.1 ATtiny84 Timer/Counterl Modes

Table 14-5. Waveform Generation Mode Bit Description'"

| WGM12 | WGM11 | WGM10 |Timer/Counter Mode of Update of | TOV1 Flag
Mode | WGM13 | (CTC1) | (PWM11) | (PWM10) |Operation OCRixat |Seton

0 0 0 0 0 |Nomal OXFFFF  |Immediate |MAX

1 0 0 0 1 |PWM, phase comect, 8bit |OXOOFF | TOP BOTTOM
2 0 0 1 0  |PWM, phase comect, 9-bit |0x01FF  |TOP BOTTOM
3 0 0 1 1 |PWM, phase correct, 10-bit |OX03FF | TOP BOTTOM
4 0 1 0 0 |cTC OCRIA |Immediate |MAX

5 0 1 0 1 |Fast PWM, 8-bit OX0OFF  |BOTTOM |TOP

6 0 1 1 0  |Fast PWM, 9-bit 0XO1FF  |BOTTOM |TOP

7 0 1 1 1 |Fast PWM, 10-bit OX03FF  |BOTTOM | TOP

8 1 0 0 0 m&phase MENEEY | BOTTOM |BOTTOM
9 1 0 0 1 Eﬁg&p“ase andfrequencty | nopia  [BoTToM  BOTTOM
10 1 0 1 0  |PWM, phase comect ICR1 ToP BOTTOM
11 1 0 1 1 |PWM, phase comect OCRIA |TOP BOTTOM
12 1 1 0 0 |cTC ICR1 Immediate | MAX

13 1 1 0 1 |(Reserved) ~ _ _

14 1 1 1 0  |FastPWM ICR1 BOTTOM |TOP

15 1 1 1 Fast PWM OCR1A |BOTTOM |TOP

MNote: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the
functionality and location of these bits are compatible with previous versions of the timer.

3.1.2 ATtiny84 Pulse Width Modulation (PWM) with AnalogWrite()

Through the use of the analogWrite (pin, duty cycle) function provide by the core
Arduino libraries, a limited form of PWM signals have been available to you for such applications as
dimming LEDs and DC motor speed control. Depending on which pin you invoke the behaviour on,
you are implicitly selecting one of the available Timer/Counters on your MCU. This is summarized
for the Ttiny84 in the table below.

Timer | Bits Pins analoghrite Dependent Functions
Frequency
0 8 8 (PB2), 7 (PA7) ?Hz delay (), millis (), micros ()
1 16 6 (PA6), 5 (PA5S) ? Hz Tone Library, Servo Library

Care must be taken when using analogWrite to avoid pins required by parallel use of the
dependent functions indicated above that would result in strange behaviour.

Finally, As useful as the analogWrite function is, it does not offer control over the frequency of
the square wave which is essential for a wider variety of MCU functionality and applictions. We
need to dig deeper.

PAGE 24 AVR OPTIMIZATION: 2022-2023 RSGC ACES



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION

3.1.3 ATtiny84 Timer/Counter Registers
ATtiny84 Timer/Counter Ports

Timer/Counter 0
0x3C (0x5C) OCROB Timer/Counter0 — Output compare register B
0x39 (0x59) | TIMSKO = [ = ] = ] = [ = ] OCIEOB ] OCIEOA ] TOIEO
0x36 (0x56) OCROA Timer/Counter0 — Output compare register A
0x33 (0x53) | TCCROB | FOCOA [ FOCOB | - ] - | WGMO02 ] CS02 [ CS01 | CS00
0x32 (0x52) TCNTO Timer/Counter0
0x30 (0x50) | TCCROA | COMO1 |COMOAO|COMOB1/COMOBO| - | | WGMO1 | WGMO00
Timer/Counter 1
Ox2F (0x4F) | TCCR1A | COM11 |COM1A0|COM1B1|COM1B0O - WGM11 | WGM10
Ox2E (Ox4E) | TCCR1B | ICNC1 | ICES1 - WGM13 | WGM12 | CS12 cs1 CS10
| 0x2D (0x4D) | TCNT1H Timer/Counter1 — Counter register high byte
0x2C (0x4C) | TCNTIL Timer/Counter1 — Counter register low byte
0x2B (0x4B) | OCR1AH Timer/Counter1 — Compare register A high byte
0x2A (0x4A) | OCR1AL Timer/Counter1 — Compare register A low byte 4 A
0x29 (0x49) | OCR1BH Timer/Counter1 — Compare register B high byte ASM
0x28 (0x48) | OCR1BL Timer/Counter1 — Compare register B low byte awee
[oxoc(ox2C) [ TiMmsk1 | - [ - [ icEt [ - | - [oCEB] OC|E1A|]T|E1-|

3.2 ATtiny85 Timer Application: Function Generator

Inspiration for an RSGC ACES Function Generator developed in the Spring of 2021, based on the
position of a rotary encoder, came from David Johnson-Davies terrific blog on the project,
http://www.technoblogy.com/show?22HF.

CES. ATtiny85 Function Generator

LR ER

| = mERRER mEEm®
- -
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3.3 Accessing 16-Bit Registers
(Lifted directly from the ATmega328P datasheet...)

The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via the 8-
bit data bus. The 16-bit register must be byte accessed using two read or write operations. Each 16-
bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit access. The
same temporary register is shared between all 16-bit registers within each 16-bit timer. Accessing
the low byte triggers the 16-bit read or write operation. When the low byte of a 16-bit register is
written by the CPU, the high byte stored in the temporary register, and the low byte written are both
copied into the 16-bit register in the same clock cycle. When the low byte of a 16-bit register is read
by the CPU, the high byte of the 16-bit register is copied into the temporary register in the same clock
cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-bit
registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no
interrupts update the temporary register. The same principle can be used directly for accessing the
OCR1A/B and ICR1Registers. Note that when using “C”, the compiler handles the 16-bit access.

Assembly Code Examples'’

; Set TCNT! to Ox0I1FF
1di r17,0x01

1di rle, 0xFF

ont TCHTIH, 17

out TCHNT1L, rlé€

; Bead TCHNT1 into rl7:rlé6
in rl6, TCNT1L

in r17, TCNT1H

C Code Examples'

unsigned int i;

s St TCNT

TCHT1 = 0x1FF;

/* Read TCNT! into i */
i = TCNT1;
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4 ADC: Analog to Digital Conversion

The real world is continuous; the behaviours that nature exhibits (heat,
pressure, light, force, etc.) are said to be analog. Many forms of sensors
exist that convert these analog behaviours to continuous voltage levels. A
light-dependent resistor or LDR (aka. photoresistor) for example, in series
with another known resistor level, can provide an MCU with access to a

continuous voltage.

The digital world of MCUs interpret the analog voltage output of the sensors by mapping them to a
range of discrete voltage levels represented internally, by binary numbers. The MCU’s process of
transforming a continuous analog voltage reading to a discrete digital approximation is the subject
of this chapter.

Of all the features that microcontrollers offer, a strong case could be made for Analog to Digital
Conversion being its most important function. After all, the ability to capture real world data and
digitize it for manipulation, transmission, and storage purposes is an undeniably critical feature
within our modern world. Although the AVR line of 8-bit MCUs offers a 10-bit onboard ADC unit
that we've exploited for a number of purposes, what if our needs called for either a higher or lower
sampling accuracy? A deeper understanding of how the ADC function works is called for should we
wish to build our own ADC unit.

4.0 Analog Comparator

In previous years you likely explored the ability of operational
amplifier to act as a comparator. The classic LM741 will output a
high signal on Pin 6 if the voltage on the non-inverting input

(Pin 3) is greater than the voltage appearing on the inverting input
(Pin 2), otherwise Pin 6 will present a low.

The AVR family of MCUs has a built-in comparator that can be
accessed.

ATtiny84 u
Analog Comparator ~ VCC [ 14 [] GND

(PCINT7/ICP/OCOB/ADC7) PA7 [

(PCINTS/XTAL1) PBO [ |2 13 [] PAO (ADCO/AREF/PCINTO)
(PCINT9/XTAL2) PB1 [ 3 PA1 (ADC1/AINO/PCINT1)
(PCINT11/RESET/dW) PB3 [ |4 ACO PA2 (ADC2/AIN1/PCINT2)
(PCINT10/INTO/OCOA/CKOUT) PB2 []5 10 [] PA3 (ADC3/TO/PCINT3)
6
i

]
9 [] PA4 (ADC4/USCK/SCLIT1/PCINT4)
]

(PCINT6/OC1A/SDA/MOSI/ADCE/) PAG |: PAS5 (ADC5/DO/MISO/OC1B/PCINTS)
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RSGC ACES
Analog Comparator Interrupt
on the ATtiny84

Interrupt set to toggle % 7N ' - I‘a:-*\RIAB‘L__E
OnBoard LED - > ofh, VoIt

on ACO toggle on AIN1

4.1 DAC: Digital to Analog Conversion (DAC)

Of all the features that microcontrollers offer, a strong case could be made for Analog to Digital
Conversion being its most important function. After all, the ability to capture real world data and
digitize it for manipulation, transmission, and storage purposes is an undeniably critical feature
within our modern world.

The fundamentals of how a DAC works can be
vividly explored through the use of a passive
resistor network known as an R2R Ladder, which
we shall undertake. Although the AVR line of 8-bit
MCUs offers a 10-bit onboard DC unit that we've
exploited for a number of purposes, what if our needs called for either a higher or lower sampling
accuracy? A deeper understanding of how the ADC function works is called for should we wish to
build our own ADC unit.

4.2 Successive Approximation

An informative base from which to mount our investigation
might start with a somewhat familiar binary tree. As a By Tre
child you might have engaged in a guessing game in which
a series of ranked guesses with a response of either lower
or higher could lead you to your target. Indeed, this

approach could lead to a conversion method from decimal

to binary as suggested by the labeled paths.

100 101 110 111 &
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5 Preparations for AVR Assembly Language Programming (AALP)

The past year-and-a-half has prepared you for a journey
very few secondary school students are able to undertake.
That is, descend to the deepest levels possible of a modern -
microcontroller. In fairness, the deepest level an embedded e
system programmer can go is to program in Machine
Language (aka. binary or hexadecimal). Since this is barely
readable by humans the numeric codes are assigned 2-4

letter mnemonic names to make them reasonably Hardware

Assembly Language

Machine Language

understandable while taking nothing away from their
efficiency. This set of codes is the focus of this course and is known as Assembly Language. Here is a
list of the top 10 most popular computer languages as of June 2021,

Jun 2021 Jun 2020 Change Programming Language Ratings Change
1 1 e & 12.54% -4.65%
2 3 - a Python 11.84% +3.48%
3 2 b Java 11.54% -4.56%

&

@ C+ 7.36% +1.41%

@ c# 4.33% -0.40%

6 6 @ Visual Basic 4.01% -0.68%
JS JavaScript 2.33% +0.06%

e PHP 2.21% -0.05%

@ Assembly language 2.05% +1.09%

10 10 saL 1.88% +0.15%
Embedded systems is the computer engineers’ term for
modern smart devices. Microcontrollers lie at the heart of Muut-w-ﬁ“n“,lﬁ

these systems and, in order to maximize their performance,
you must speak their native language.

With the exception of C and Assembly the remaining eight
languages are high-level tools designed to run on operating
systems that hide keep the hardware efficiencies out of site
for their practitioners.

Each microcontroller or microprocessor line (from AVR,
PIC, NXP, Intel, etc.) has its own native machine and assembly language.
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5.0 Development Preparations

5.0.0 Hardware: Atmel/Microchip AVR Microcontrollers

Up until recently, two microcontroller companies dominated the marketplace. ATMEL backed its

AVR line of MCU products and Microchip championed its PIC family. The two companies merged in

April 2016 under the Microchip name, continuing to offer both products. Until such time as the

Arduino ceases to use the AVR line as its microcontroller of choice, RSGC ACES will stick with it.
http://www.microchip.com/design-centers/8-bit/avr-mcus

I Home > B-Bif MCUs > AVRMCU
8-Bit MCUs Haomg £-Bif MCU: H
= B-Bit MCUs o
+ PIC MCUs i i R}
Microchip AVR® MCUs
= AVR MCUS
Gel Started Now
- Parametnc Unsurpassed Performance, Efficiency, and Flexibility
search
+ Peripherals Micrachip's 8-bit AVR® micracontrollers (MCUs) are an excellent choice for designers of a
: wide variety of embedded systems. These devices offer a unique combination of
8-bit perfarmance, power efficiency and design flexibility. Optimized to reduce development
Resources time, they are based on the industry’s most code-efficient architecture for € and
. Data Sheals assembly programming. View our Quick Reference Guide to get o
App Notes quick ovenview of Microchip's 8-bit AVR
Industry-leading development tools and design support further help you get your design porifolie, peripheral integration, and
8-hit to market faster. Plus, once your products have launched, the large AVR family allows migration aptions.
Devempment You 1o reuse your knowledge to improve and enhance your offerings, making it easy and
cost-effective to expand into new markets,
Tools
+ PiC Hardware
+ PIC Software Get Started Now
+ AVR Hardware
+ AVR Software

AVR Product Families

tinyAVR® MCUs megaAVR® MCUs AVR® XMEGA MCUs

rinvAWR mirrocontrollers (MCLS) are merAAVR mirrnrontrollers (MCLIRY are AVR XMFGA mirrnrontrollers deliver the

5.0.0.0 Peripheral Integration
All AVR microcontrollers share the same assembly T ———
language consisting of approximately 130 different ——

instructions. A handful of instructions are MCU-
specific.

Although our course focuses on the ATmega328P,
ATtiny84, and ATtiny85, you should not feel limited
to these alone for your particular application. You are
encouraged to explore the 8-bit AVR MCU Peripheral
Integration document to choose just the right
combination of features for your embedded system.
There are a wide variety of options for you to choose from that will suit almost any application.

http://ww1l.microchip.com/downloads/en/DeviceDoc/30010135D.pdf
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5.0.1 Software Development Tools

5.0.1.0 Integrated Development Environment: Atmel Studio 7

ATMEL, the manufacturers of the AVR line of microcontrollers have developed the most
comprehensive IDE for their MCUs. The latest version, ATMEL Studio 7, offers the richest, most
professional, set of tools for AVR embedded systems development.

Note. Since | run Windows 7 on my laptop, I am limited to Atmel Studio 6 as the screenshots reflect.

File Edit View VAssist{ Project Build Debug Tools Window Help

e I T R A SR 1 FER | == = A C2[08R 305

ICEFMY A g SR @ u k| EESE s T He |- S E G B o B o} wATmega328P § Simulater

B =
24 irBlinksase Processor >ax e
3 & Hame Joluc 10 View - mx
4  * Created: 8/1/2018 11:54:33 PM Program Counter 0500000002
5 * Author: Chris Darcy Stacngnmter 0:08FF Al | = =] e -l
s] * X Register 0:0000 Name Value
78] [messts o ¥ Register 0x0000 e B AD_CONVERTER . 3
8 1di r16,1<<PBS spreapre to declare pin 13 for output | 7 Register 040000 B ANALOG, COMPARATOR
- st o e status Register . I DEEOEEGC BERCPU e
10 mov  rl7,r spreserve value for future use e, N B CEPROM e
11 again
b (e PORTE, r17 stoggle pin 13 to affect the blinking ;::“‘E;::h 1'23%2‘4"‘2 E"::AL—INTERRUPT
13 rcall  delayls skill clock cycles while admiring pin !
14 eor r17,r16 stoggle signal for pin 13 = Registers @ PORTC
15 rjmp  again ;repeat... ROO 000 E PORTD
= RoL 0 SPI .
bt dsé?n’i:acad by delay loop calculator e 0 7 barpe, ificdess Valug gt
19 5 at http://wm.bretmulvey. con/avrdelay. html %i Ezg ::EIS:E gﬁi gﬁg 88288888
@ ;
21 ; Delay 16 800 008 cycles i 000 WPORTE 025 000 OOOOOOOO
22 ; 1s at 16 MHz ROG 0x00
s RO7 0:00
24 1di ris, 82 RO8 0x00 -
00% ~ 4 k09 000 v
R10 0:00
1 000
| MName ‘Value a2 0x00
| ‘ R13 0:00
R14 0:00
RIS 0:00
Ri6 0:20
R17 0:00
Rig 0:00
Ri9 0:00
R20 0:00 -

0:00 PpeFEY A Command B Immediate Wi.. B Output B Eror List

- , T0am [ |
[

8/2/2018 ||

The screenshot above is of Blink-like code running in the AS6 Simulator. Numbered panels are as
follows,

1. Source code.

2. Processor View. Shows the contents of the General Purpose Registers and selected Extended
Registers reflecting the flow of control after each statement execution.

3. 10 View. Shows the state of the peripherals and 10 Ports after each statement execution.

There is so much ahead of us, but what is unique to note at this early stage of the course is the
intimate relationship between the assembly code statements and the hardware. It is only through
deliberate precision that your code has on the hardware that the absolute efficiency required of
your embedded systems can be achieved.
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5.0.1.1 Operating System: Windows 10

Unfortunately, only a Windows version of ATMEL Studio 7 exists. So, you need to install Windows
10 on your laptop. Ethan Peterson (ACES 18, Queen’s '22) was kind enough to assemble the
following installation guide for your convenience...

Before You Begin:

- Your Mac (Connected to its charger)
- A USB Flash Drive to act as your Windows installation media
o 16GB or larger
o Should be completely blank. If not, backup your files elsewhere and erase the flash
drive. Depending on the file system, the flash drive may need to be reformatted
using Disk Utility as a MS-FAT volume using Master Boot Record (MBR)
- Download a copy of the Windows 10 ISO Image. (https://www.microsoft.com/en-
us/software-download /windows10)
- Make a backup of important files on the Mac side of your computer. This is needed in case
the installation goes wrong.

Step 1: Open BootCamp Assistant

Q. boot Camp Assistant

TOP HITS

" Font Book

&2  Photo Booth
APPLICATIONS

® iBooks

Contacts

iMazing
¥ Xcode Boot Camp Assistant

FOLDERS
bootstrap — goog

boolean — test

Kind Application
Size 3.7 MB
boolean — es5-ext Created 2016-09-19
Modified 2018-03-04
Last opened 2018-05-01

bootstrap — vendor

boom
DEFINITION
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Introduction

Boot Camp Assistant
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Boot Camp Assistant helps install Microsoft Windows on an Intel-based Mac by downloading
the necessary support software, creating a partition on your disk for Windows, and then
starting the Windows installer. Please click the Open Boot Camp Help button for instructions to
finish installing Windows and the support software you downloaded.

IMPORTANT: Back up your disk before partitioning it or installing Windows. If you have a
portable computer, make sure the power adapter is connected.

Open Boot Camp Help

Continue

Click “Continue”

Step 2: Format your Windows Partition

Depending on the age of your MacBook
the next screen in the BootCamp Wizard
will be different.

If you are prompted to connect a USB
flash drive go ahead and do so. If not,
your laptop will store the windows
installation media internally.

Select the location of the Windows 10 ISO
file you downloaded as shown above.
Select a size for the Windows partition on
your computer. The minimum size is
40GB, which should be more than enough
for your AVR Studio projects throughout

Boot Camp Assistant
Install Windows

To install Windows, please choose the Windows ISO file, select the partition size, then
press Install button.

1SO image: Wsels/sandeeo/l’)esklop[wim 0.1703_English_x¢ Choose...
(& “Macintosh HD" will be partitioned as:

'8 >

N

205 6B
13168 free

4468

Please select the Boot Camp partition size. Once the partition is created, it
cannot be adjusted.

Windows Support Software will be installed after completing Windows
installation.

Go Back Install

the year. Depending on your MacBook, this minimum may be different.
This partition cannot be adjusted later so it is better to reserve additional space if you think

you may need it.
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Step 3: Installing Windows

- Unplug any external devices from your laptop that are not critical to the installation, such as
an external keyboard, mouse and hard drive, as they can interfere with the installation.
Leave only the charger and USB connected if it is required and click “Install” on the
BootCamp Wizard.

@ Boot Camp Assistant

Task Status

Downloading Windows support software...
Estimated download time: 2 minutes remaining

=

Stop

- BootCamp will start downloading the Windows Support Software drivers.

- These drivers are installed in Windows to ensure the keyboard, trackpad and other
peripherals on your Mac run correctly.

- When the download is complete your computer will prompt you to restart.

- The computer should automatically boot into the Windows installer.

- Follow the onscreen instructions

| & I
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Step 4:

When the “Activate Windows” screen is reached, click “I don’t have a product key” and
select the Pro edition of Windows.
Click “Next” and accept the terms and conditions
If prompted, pick the partition called “BOOTCAMP” as your installation destination.
Once Windows is done installing, the system will reboot into your fresh installation of
Windows. If your computer boots into OSX, shut it down and hold the option key while
starting up. When the computer prompts you for what OS you would like to use, select
Windows.
When Windows is started for the first time you will have to configure some settings. Follow
the onscreen instructions for this.
When you reach the Windows Desktop, the Windows Support Software installer should
open and guide you through the driver installation. If not, you will have to install it manually
from your installation media.

o Follow the instructions here: https://support.apple.com/en-ca/HT208495

o Ifyou used a USB flash drive for installation, plug it back in and get the software

from there as opposed to the OSXRESERVED Partition on Windows.

Install Atmel Studio

Download Atmel Studio 7: http://www.microchip.com/mplab/avr-support/atmel-studio-7
Select the offline installer
Open the file and follow the installation prompts.

5.0.1.2 Programmer: Atmel ICE

Currently, the best programmer for use with ATMEL
Studio 7 is the ATMEL Basic ICE. These are expensive
programmers so you will be lent one for use this year.

Return it in working order at the end of the year and its
use is free of charge. Caution. For such an expensive
device the ribbon cable is surprisingly cheesy.

Strangely is does not provide its own power. You must
supply power to your Arduino separately.

https:
technology/ATATMEL-ICE-BASIC/ATATMEL-ICE-BASIC-

www.digikey.ca/product-detail /en/microchip-

ND/4753381

5.1 Microchip’s Online Reference

Learning Assembly Language and gaining familiarity with the tools takes a time and practice. Online
support is available and [ recommend starting any search for insight at Microchip’s online home
page. You may even wish to bookmark this URL,

https://www.microchip.com/webdoc/index.html
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ﬁ'\ MICROCHIP

Software
r" Atmel Studio i AVR Simulator w@,, AVR Assembler
* User Guide ¢ User Guide * User Guide

* Product Page

E AVR Software Framework @ QTouch Composer . Atmel Data Visualizer

* User Guide * User Guide * User Guide
* Product Page * Atmel Gallery &

* Atmel Gallery &

. Visual Assist - Terminal Window p Help Search
./,

* User Guide ¢ User Guide * User Guide
o Atmel Gallery & o Atmel Gallery 7

5.2 New Atmel Studio Project

1. Before beginning your first project create a folder to house your ICS4U Assembly projects.
2. LaunchFile > New > Project and complete the dialog as shown below, left. Press, OK.

3. Inthe Device Selection dialog, select the target device (ATmega328P).

pp— . EEEs  e——

b — ——— 3 [E 0
e P
B i [ e

Wi 1t

AEEEYs g

JiAn
i
in
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5.3 Your First Project: Blink

5.3.0 Simulator

Without an Arduino plugged into your laptop, the
Arduino IDE allows you to compile your code to
stabilize your syntax but, understandably,
prevents you from uploading to test if it works.

Atmel Studio does allow you to execute your code
without a physical MCU being present. It does so
through the services of a built-in Simulator utility.

Select Project > (project)

5.3.1 Hardware

Launching the Atmel Studio Simulator allows you
to step through your assembly code, one statement
at a time, and monitor the MCU hardware. The IO
View, shown to right is where the detailed status of
each peripheral can be followed.

Checking the pin mapping diagram inside the cover
of this workbook reveals that pin 13 is mapped to
bit 5 of PORTB. Terminology,

To set a bit, means to make it 1
To clear a bit means to make it 0

So, a blinking LED on Arduino pin 13 is the result of
two actions,

a) The direct setting bit 5 of the DDRB (Data
Direction Register of PORTB), and,

b) Applying a square wave signal (alternate
setting and clearing) to bit 5 of PORTB.

ADVANCED COMPUTER ENGINEERING SCHOOL
ICS4U - AVR OPTIMIZATION

Build
on: | N/A
Build Events

Toolchain

Selected debugger/programmer

[] Preserve EEPROM

Select Stimuli File for Simulator
<

X

Properties > Tools > Simulator

10 View * [ X
=1 =1 Fiter: | -
Marme Value
® B AD_CONVERTER =
[ B8 ANALOG_COMPARATOR
= i CPU
# [ EEPROM
# [f EXTERNAL_INTERRUPT
12 PORTC
18 PORTD
® [ SPI
# @) TIMER_COUNTER_D
® @ TIMER_COUNTER_1
@) TIMER_COUNTER_2
= B TWI
# B USARTO -
Mame Address Value Bits
WPrNE 023 000 OOO00D0O0O =
WDDRE 024 020 OOBOOD0O0
W PORTE (25 020 COJO@OO0O0O0O
[QeRUENE ¥ Solution Explorer
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5.3.2 Software

Create a new Atmel Studio Assembly project and name it B1ink. Download the source code
Blink.asmand replace the default B1ink.asm that was create for you in Debug folder.

rsgcaces > AVROptimization > 1 Getting Started > Blink.asm @)

5.3.2.0 Source Code Appearance

A quick glance that assembly source code of the

Blink.asm a=P

Blink program reveals some standard features of AT . 5
the IDE that include 4 % Created: 8/1/3618 11:54:33 P
4 5 % Author: Chris Darcy
7
7 eset:
1. Syntax highlighting (green for comments, blue o o B pmmevescnepinniiosionet
10 mov ri7,rlé spreserve value for future use
for keywords) 11 again: , o
12 out PORTB, r17 ;toggle pin 13 to affect the blinking
13 rcall delayls ;kill clock cycles while admiring pin 13
. 1 eor ri7,r16 ;toggle signal for pin 13
2. Line numbers Gl wie feeein srepeatia
17 delayls:
18 ; Generated by delay loop calculator
3 Tab StOpS 19 ; at http://www.bretmulvey.com/avrdelay.html
’ if : Delay 16 086 880 cycles
22 ; 1s at 16 MHz
. . 23
4. Live hyperlinks o - s

5.3.2.1 Assembly Source Code

Unlike high level source code, executable statements in AVR Assembly follow one of four a common
syntactic structure (square brackets indicate an optional element),

[label:] instruction [operands] [Comment]

[label:] directive [operands] [Comment]
Comment

Empty line

1. Alabel provides a symbol that is the target of branch or a variable.
2. Aninstruction is a 2-4 letter mnemonic opcode.

3. Zero, one, or two operands provide the domain of the instruction.

4. A preprocessor directive (starts with a #) and an assembler directive (starts with a dot, .) are
requests for some preparatory action prior to the assembler converting your code to machine
language.

5. A comment illuminates the purpose of the statement and either appears at the end of the
statement, or starts in Column 1 and occupies a line by itself. The syntax below confirms that a
semicolon alone qualifies as a comment.

; [Text]
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5.3.3 Debugging Blink.asm

Once the B1ink Project has been established, and
the Simulator declared as the default
debugger/programmer Tool,

Project > Blink Properties

debugging is initiated by going to the Build menu
and selecting,

Start Debugging and Break (Alt-F5)

At that moment you will see the first executable
instruction line highlighted in yellow and Processor
Window displayed (right). A few things to note
about the Processor Window,

1. The Program Counter always hold the address
of the instruction to be executed.

2. The Stack Pointer holds the address of the top
of the Stack. The Stack starts at the end of
SRAM (0x8FF) and grows upwards (more on
this later).

3. The XY, and Z registers are aliases for the
double 16-bit register combinations R26:R27,
R28:R29, and R30:R31, respectively.

4. The Status Register (SREG) is a special byte
register in SRAM (0x5F) consisting of a set of
bits (aka flags) that are either set, cleared of left
unchanged by the previously executed
statement. This byte can be read by your code
to determine whether a course of action needs
to be taken.

5. The contents of the CPU’s 32 General Purpose

ADVANCED COMPUTER ENGINEERING SCHOOL

ICS4U - AVR OPTIMIZATION

Processor * [ X
Mame Yalue
Program Counter  0:00000000 .
Stack Pointer 0x0BFF B
X Register (0000
Y Register (0000
Z Register 0240000
Status Register OMEEMNMELZ
Cycle Counter ]
Frequency 1.000 MHz
Stop Watch 0.00 ps
= Registers
ROO 000
RO1 000
RO2 000 El
RO3 000
RO4 000
RO5 000
ROG 000
RO7 000
ROE 000
RO9 000
F10 000
F11 000
F12 000
R13 000
R14 000 e
R15 000
F16 000
R17 000
R18 000
F19 000
R20 000
F21 000 i

registers are updated dynamically to facilitate your debugging objectives.

1.3.3.0 Stepping and Breakpoints

Once the simulator is underway you have a options to step through

your code, statement by statement monitoring the effect on the
processors resources. Breakpoints can be toggled on or off by clicking in the left margin.

|6a S=[E 2= T

The 10 View can also be displayed allowing to both read and write data on the fly.
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5.4 ATmega328P Features

http://mail.rsgc.on.ca/~cdarcy/Datasheets/ATmega328PSummary.pdf

: ATmegad8A/PA/SBAIPAI168AIPAI328IP
Atmel

ATMEL 8-BIT MICROCONTROLLER WITH 4/8/16/32KBYTES
IN-SYSTEM PROGRAMMABLE FLASH

Features

High Performance, Low Power AmeTAVR= 2-5it Microcontroller Family
« Agvanced RISC Architecture
— 131 Fowarf Instructions — Most Single Clock Cycle Exacution
32 X3 General Purpose Working Ragistars
Fully Static Oparation
Up to 20 MIPS Throughput 3t 20M=2
On-chip 2-cycie Multipller
« High Engurance Non-volatile Memory Sagments
L3/1673245y2s of In-Systam Sai-Frogrammabiz FI3sh program mamory
258512'512/1KSytes EEPROM
S1211K/1K/245ytes Intemal SRAM
\ine/Erase Cydes: 10,000 Fiash/100,000 EEFROM
Data ratention: 20 y2ars 3t 85°C/100 years 31 25°C”
Opicnal Soot Cod2 Section wah Indepandant Lock Sits
« In-Systam Frogramming by Or-chip 500t Frogram
« True Reac-Whiie-Write Oparation
~ Programming LOCK for Sofaare Security
« Atmel® QTouch® tbrary suppon
~ Capacitve touch buttons, sliders and whasls
- QTouch and QMatr® acquisition
~ UptoB4 sense charnais
« Perpharal Faaturse
~ Two &-bit imerCounters with Separate Prescaler and Compare Mod2
— On2 15-0it Timar'Countar win Separate Prascaler, Compare Mooz, ang
Capturs o3z
~ Raal ime Counter with Saparate Cediiiator
~ Six PWM Charnais
- &charnal 10-bit ADC In TQFP and QFNMLF package
« Temparature Maasurament
~ E-charna 10-bit ADC In FOIP Package
« Temparature Maasurament
Programmadie Sanal USART
M3st2n'Siave SP1 Sanal Interface
Syte-crienad 2-air2 Saral Interface (Phlips FC compatidis)
Programmadie Vaichdog Timer win Separate On-chip Oscliator
On-chip Analog Comparator
Imamupt and Waks-up on Pin Changs

el 2aOF AT vage Omua_ 1925
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5.5 Peripherals
What separates a microcontroller from a microprocessor is that the format has a number of internal
peripherals. Here is a partial list of those on the ATmeg328P,

e ADC: Analog-to-Digital Converter

e Timers/Counters: 8- and 16-bit

e PWM: 8- and 16-bit Pulse Width Modulation

e Temperature Sensor

e Internal Voltage Regulator

e Multiplication: Dedicated hardware for multiplying two 8-bit values with 16-bit result
e USART, I2C, SPI

® (QTouch (Capacitive Touch Sensor) Support, Sleep Modes

5.6 AVR Central Processing Unit (CPU)

Just before we take a detailed look at the structure

Data Bus 8-bit

of AVR Assembly Source code in the next chapter, it o Frogram |¢ Staws |H
) ) i . i . Program Counter and Control
is instructive to familiarize yourself with how the Memory
Interrupt
CPU Works' Ensin%ctlon | (iznér?a\ st
Register g | e 7] ]
ni

The AVR Central Processing Unit consists of a
number of different modules interconnected

through a number of buses. The 8-bit data bus is Control Lines
highlighted by the thicker line. The address bus

and control bus are not shown. The execution cycle

can be thought of as a repetition of three stages:
Fetch-Decode-Execute.

Watchdog
Timer

Analog
Comparator

Direct Addressing

Indirect Addressing

IfO Module1

Data

<> 11O Module 2
» SRAM

/0 Module n
EEPROM

Although it does not use the AVR as its hardware, T
sequence is identical in this terrific video, \

https://www.youtube.com/watch?v=XM41GflIQFvA
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It’s all quite fascinating but the Decode stage is worth a mention at this point. The first assembly
instruction in the Blink code from Chapter 1 is,

Assembly Language Machine Language Equivalent Hexadecimal
1di rl6,1<<PB5 1110 0010 0000 0000 E200

The decoder is a combinational hardware circuit that must accept the two byte (16-bit) input E020
and parse it in such a way that the rest of the CPU assets know to place the binary value of BO010
0000 in Register 16. To keep the Decoder to a manageable level of complexity, the number of
possible instructions, and their complexity must be reduced to a minimum. These requirements
give rise to the identification of the 8-bit AVR line of microcontroller as begin of a RISC (Reduced
Instruction Set Computer) type.

Finally, a word about execution. Given a three-

stage execution cycle, it might appear that
instructions are only executed every third stage.
However a strategy referred to as pipelining has
the three stages functioning synchronously,
resulting in a statement being executed every
clock cycle.

S0 "o g w3~

Reference: http://darcy.rsgc.on.ca/ACES/TEI4M/Assembly/AVRCPURegisters.pdf

The image below offers a good summary of a number of features discussed to this point. It was
taken from the short but informative pdf referenced above.

_CPU Registers o] e e [ e

il e

INSTRUCTION [ p/
GENERAL
REGISTER PURPOSE ¥

REGISTERS

INSTRUCTION
DECODER

CONTROL
LINES

AVRCPU e
1: General Purpose Registers 4: Instruction Register — Holds fetched
2: Status Register — contains info about instruction
result of last executed instruction 5: Stack Pointer — Points to top of stack
3: Program Counter — Address of next
instruction
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5.7 Package Types

1

somn
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&k @l&ﬂﬁ%ﬁu
80

PENTAWATT

“ ! !ll -
W \-L&"-‘Jﬂ”’
P QFP
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sw T7.T0220

\ A

To1205 16220180
TO263 TO26s
<
A\ ‘
%
N,
To%2 1o

Falg
5.7.0 Digikey: Ordering
| search Within Results | 2o :
Packaging Series Speed  Number of O Voltage - Supply (Vcc/Vdd) Data Converters Operating Temperature Package i Case Supplier Device Pa

Cut Tape (CT) - | | Automotive, AECQ100, AVR® ATmega - | [16MHz ~|[23 | [18v~55v - AID 6x10b ~| [40°C ~ 105°C (TA) ~|[28DIP (0.3007, 7.62mm) - | [28-PDIP
Digi-Reel® AVR® ATmega 20MHz 27 27V ~55V AJD 8x10b ~“40°C ~ 125°C (TA) 28-VFQFM Exposed Pad 28-VQFN (4x4)
Tape & Reel (TR) 40°C ~ 85°C (TA) 32.TQFP 32.QFN (5%5)
Tray 32-VFQFN Exposed Pad 32-TQFP (7x7)
Tube

32VFQFN (5x5)
32-VQFN (5x5) |

n

Al

[ In stock [] Lead free [C] RoHS Compliant

.

Search Entry: ATmega32sp X

Results perPage 25 ~  Page 1i2

= = (|1

Quantity 2
Available it

IC MCcuU

[~ 8BIT 32KB  10,000-

B R ‘ ATMEGAB2SP-AURTRND  ATMEGA320P-AUR  Almel S e
32TQFP
ICMCU

= 8BIT32KB  12,165-

m |5 ‘ ATMEGAZ8PAURCTND  ATHEGAI28PAUR  Atmel apeatiieeg |
7/ 22TOFP
IC McuU

J= 2 8BIT32KB 12,165-

b = ‘ ATMEGA3Z8P-AURDKR-ND  ATMEGA3ZSP-AUR  Atmel b
7 32TQFP
. IC McuU

B T ATMEGH Amel EHE SRS ot

P-MURTR-ND ATMEGA328P-MUR
.

259017 2,000

522000 1

Digi-Reel® 1

258017 6000

Tape &

Bn
o " ame .o 8-Bit 2oMz (VOB D€

Almegs UARTIUSART PC
Alternate Wi
Packaging
CutTape Bn
g  Are FCSPI, De
dtenate  Atmeqs AR BEL20MHz G aRTIUSART PC
Packaging Wi
Digi-Reel® Bri
7 AR FC 8P, De
Alemate  ATmeaa R BEL20MRZARTUSART PC
Packaging wi
Tape &

Br

Reel (TR} i
a ARE R 8-Bit C T L O

3
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DESIGN STARTERS MAIN BOM PCB DESIGN NANDGateOscillator
B @ B o =B X B B X & -~
Newt  Ope Ssve  Ssveds  MNotes Expst  Share  Print cut Copy  Paste  Delete Undo  Redo
<Jajaja
Converters
Diodes V+ NAND GATE OSCILLATOR (NGO)

Full Circuit
Credit: D. Cutcher

R3 c2

Electromechanical

Logic
Buffers
Demultiplexer
FLIP-FLOP and LATCHES

Gates

26 Results

:I)— 24NPUT OR

D. 2INPUT OR

L DEMORGAN, 5T

jD_ 2JNPUT EXCLUSIVE NOR
ST

:[} 2INPUT NOR

2INPUT AND
st

:[,} 2INPUT NOR
5T

jD_ 2INPUT EXCLUSIVE OR
sT

I ~|  Useof Scheme-itis subjectto and constitutes your agrssment to the Scheme-it License a

Paget . |

[+)

Page 172 >

SEhemeE 1 chisose - Hel -

Component lssues?

2 Chat with a Digi-Key Technician

7| snowgra ¥

RSGC ACES: DDBv6 Software Serial Output

RSGC ACES - DDBvé
Software Serial OL_I;EpUt

AVR 8-bit Assembly Language on the ATtiny84
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5.8 Interesting Exercises

5.8.0 Delay Calculator

Here is the link to the online version of Bret Mulvey’s AVR Delay utility,
http://www.bretmulvey.com/avrdelay.html

A remarkable example of ACES insight and initiative was one afternoon in 2018 where [ happened
to mention that [ thought Mulvey’s calculator could be improved if the user was permitted to name
the starting register for the sequence of delays. Nothing more was said in class. T. Morland

(ACES '18) went home that afternoon and upgrade Mulvey’s code that we prefer to link to, Amazing.

http://darcy.rsgc.on.ca/ACES/TEI4M/AVRdelay.html

5.8.1 Traffic Light

Insert a Schaffer traffic light into your Arduino in such a way that all four pins land S—
within a single PORT. Yy

Create the project TrafficLight and model the solution to a continuous display
after the B1ink project code.

Comment your code thoroughly, but not gratuitously.

5.8.2 RGB LED

Insert an RGB LED into your Arduino in such a way that all four pins land within a RGB LED
single PORT.

Create the project RGBLED and develop a continuous display that runs through all eight bTﬂ
combinations of LEDs (1 blank, 3 singles, 3 doubles, 1 triple). ‘ | i ‘

Comment your code thoroughly, but not gratuitously.

5.8.3 Questions
1. ATmega328P has 32K worth of PROGRAM FLASH. What is the highest address in hexadecimal?

2. The ATmega328P has 2K worth of SRAM. What is the highest address in hexadecimal?

2. The ATmega328P has 1K worth of EEPROM. What is the highest address in hexadecimal?
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5.9 Just Before We Start: C

/*

* CBeast.c

* Example of AVR-gcc C Code to present the

"* value of pi on 'The Beast'.'The Beast' is a

* PCB designed to present a 12-digit r d

* PoV display using a normal 595 shift registers i :q ‘5 qab SS sq
* for the segment and TPIC6C595 Power logic . csmmmms

* current sink for the LA-301 cathodes

* Created: 8/10/2018 1:10:28 PM

*

Author: Chris Darcy */

#include <avr/io.h>
#define F_CPU 16000000UL // 16 MHz
#include <util/delay.h>

uint8 t latch = 1<<PB2; //digital pin 10
uint8 t clock = 1<<PB3; //digital pin 11
uint8 t data = 1<<PB4; //digital pin 12

// Seven Segment Order:dGFEDCBA

uint8 t dp = 1<<7;

//Assemble the hexadecimal segment maps into single array...

uint8 t segMaps[] = {0b00111111,0b00000110, 0b01011011,
0pb01001111,0b01100110,0001101101,0b01111100,0b00000111,0b01111111,0b01100111,

0b01110111,0001111100,0000111001,0001011110, 0001111001, 001110001} ;
char displayl[] = "314159265539"; //Sample...

//my ‘'super' shiftout (23 bits are shifted in one go)
void shiftOut (uint8 t d, uint8 t c, uint8 t 1, uint32 t segMap, uint32 t digit ) {
uint32 t bits = (segMap<<16) | digit;
// assemble the 23-bit shift out value from the segMap and the respective digit
//pull latch low...
PORTB &= ~latch;
//synchronously clock in the data bits
for (uint32 t mask=1L<<23; mask>0; mask>>=1) {
PORTB &= ~clock;
// should the data bit be set or clear?
if (bits & mask)

PORTB |= data;
else

PORTB &= ~data;
PORTB |= clock;

}
//pull latch high to present present flipflops on the output pins...
PORTB |= latch;

}

int main(void) {
// Let's use three pins of portB for the shifting...
DDRB = OxFF;
uint8 t i = 0;
uint32 t segments;

while (1) |
segments = segMaps([display[i]-481];
if (!i) segments |= dp; //add decimal point on the 3 for pi
shiftOut (data, clock, latch, segments, 1L<<(11-1i));
i = (i+l) % 12;

1}
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6 AALP: AVR Assembly Language Programming

A clarification about the terminology, assembly and assembler. Whereas some sources prefer to use
the terms interchangeably, [ do not. I use the term assembly to refer to the mnemonic-based
language of the CPU. I use to the term assembler, when [ am referring to the program that converts
code written in assembly (. asm) into machine code (. hex)

6.1 Assembly Code Organization

Earlier in Chapter 1 the four possible varieties of assembly source code statements were reviewed.

In this section we’'ll tackle the organization of these statements within ATMEL Studio and the
conventional layout of your . asm files.

1. Comment. At the top of your code a comment describing the purpose, author and date is
expected

2. Preprocessor. Starting after the opening comment and continuing throughout the source file, a
set of directives assist the assembler in building your final machine loadable (hex) file. These
commands start with # as the first non-space character of which #include
“m328Pdef.inc” would be one such directive. This directive is done automatically so it is
optional.

3. Assembler Directives. Numerous directives that start with a dot, are recognized by the
assembler to facilitate code organization, memory requests, aliases, and conditional execution
to name a few. Some examples are,

.EQU io offset = 0x23
.DSEG
varl: .BYTE 1 ; reserve 1 byte to varl

table: .BYTE tab size ; reserve tab size bytes

.DEF temp = rl6
.DEF ior = r0

.CSEG

1di temp, 0x£0 ; Load 0xf0 into temp register
in ior, 0x3f ; Read SREG into ior register
eor temp, ior ; Exclusive or temp and ior

4. Interrupt Jump Table. As required, the first 30 addresses of Program Flash or so are reserved
for the Interrupt Jump Table. Care should be taken when using this space. To avoid code

.CSEG
.ORG 0 ;ensure PC starts at the beginning
rijmp reset
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reset: 1di rl6, 1<<PB5 ;first instruction in your code

5. One-Time Initializations (setup). Very much like the setup () function in Arduino C last
year, include assembly code that needs to run only once at this point.

6. Main Loop Body. Include assembly instructions that run continuously.

7. Additional Functions and Interrupt Service Routines.

6.2 Reusable Building Blocks

The code fragments below offer common building blocks you will use repeatedly.

1. Numeric constants can be defined as binary, octal, decimal (default) or hexadecimal. Here is
how you would represent the base 10 number 100 in each of the other three bases,

Binary (Base 2, leading zero): 0B01100100, 0b01100100
Octal (Base 8, leading zero): 0144
Hexadecimal (Base 16): 0x64, $64

2. The shift left (<<) operator offers an efficient expression resulting in the setting a specific bit
initialization of a byte.

1di rle6,1<<3 ;B00001000
1di rl7,1<<PB5 ;B00100000
1di r20,7<<4 ;B01110000

3. Non-consecutive bits within a byte are set with the or operator (|).
1di rl6, (1<<ICIE1l) | (1<<TOIEl) ;falling edges in ICRIH:L

4. Labels as operands. Use of the .ORG directive assists in laying out your code and data in
memory. Labels are aliases for their location in memory and can be used as such as operands.

5. Initializing the pointer registers (X, Y, and Z) with the starting address of an array is as
follows,

1di XL, low (RPMStart<<l) ;position X and Y pointers to the
1d1i XH,high (RPMStart<<l) ;start and end addresses of RPM array

6. Toggling a specific bit is best accomplished with the exclusive-or, eor. Consider how the
mask, 0b0010000 can be applied repeatedly to toggle bit 5 of the data,

data: 0b11111111

mask: 0b00100000
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data®mask =data: Ob11011111
mask: 0b00100000
data *mask=data: 0b11111111

mask: 0b00100000

data *mask=data: 0b11011111

7. Understand the difference between logical NOT and bitwise NOT.
Logical: 1di rle6,!'0xf0 ; Load rl6 with 0x00

Bitwise: 1di rle6,~0xf0 ; Load rl6 with 0xO0f

6.3 Basic Instructions by Function

The complete list of functions either in summary or full descriptions is available off links at the top
of our home page.

6.3.0 Register Setting

clr Rd ;clears a register (0<d<31). Same as eor Rd,Rd

ser Rd ;sets a register to 255 (16<d<31). Same as 1di Rd,SFF
1di Rd,K ;loads the constant K into Rd (16<d <31, 0<K <255)

6.3.1 Copying

mov  Rd,Rs ;copy contents of Rs to Rd

in Rd, port ;read the port contents into Rd

out port,Rs ;write the contents of Rs to the port

1lds Rd, K ;load the contents of address K in SRAM into Rd
sts K, Rs ;store contents of Rs in address K of SRAM

lpm ;load the contents of address pointed to by Z into RO
pop Rd ;copy the contents of top of the Stack to Rd

push Rs ;copy the contents of Rs onto the top of the Stack
6.3.2 Adding

inc Rd ;add 1 to Rd (rollover)

add Rd, Rs ;add Rs to Rd (no carry:C flag)

adc Rd, Rs ;add Rs to Rd (with carry:C flaqg)

adiw Rd,K ;add K (0<K <63) to Rd+1:Rd (d € {24,26,28.30})
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6.3.3 Subtracting

dec
sub
subi
sbc
sbci

6.3.4 Shift & Rotate

1s1l
1sr
rol
ror
asr

Rd

Rd, Rs
Rd, K
Rd, Rs
Rd, K

Rd
Rd
Rd
Rd
Rd

ICS4U - AVR OPTIMIZATION

;subtract 1 from Rd (rollover 0-1=255)
;store the difference Rd-Rs in Rd

;store the difference Rd-K in Rd (16 <d <31)
;store the difference Rd-Rs in Rd with carry
;store the difference RdA-K in Rd with carry

;logical shift left: C—Bit7,Bitn+l«Bitn,Bit00
;logical shift right: 0-Bit7,Bitn+l1-Bitn,Bit0-C
;rotate left: C—Bit7,Bitn+l«Bitn,Bit0C

;rotate right: C-Bit7,Bitn+l1-Bitn,Bit0-C

;arithmetic shift right: Bit7-Bit7,Bitn+l1-Bitn,Bit0-C

RSGC ACES: Charlieplex Audio-Responsive Equalizer
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6.3.5 Binary

and Rd,Rs ;logical AND: Rd«Rd&Rs

andi Rd,K ;logical AND: Rd—Rd&K, (16<d <31,0<K <255)
or Rd, Rs ;logical OR: Rd«Rd|Rs

ori R4d,K ;logical OR: Rd<Rd|K, (16<d<31,0<K <255)
eor Rd,Rs ;Exclusive OR: Rd«Rd"Rs

com Rd ;One’s Complement: Rd—~Rd or Rd—SFF-Rd

neg Rd ;Two’s Complement: Rd—~Rd+1l or Rd<0-Rd

6.3.6 Bit Manipulation

sbr Rd,K ;sets various bits: Rd<Rd|K, (16<d<31,0<K <255)

cbr Rd,K ;clears various bits: Rd«Rd&~K, (16<d<31,0<K <255)
sbi A,Db ;sets bit in I/0O port: A<A| (1<<K), (0<A<31,0<b<7)
cbi A,b ;clears bit in I/0 port: A<A&~(1<<K), (0<A<31,0<h<7)

o o
Address Name Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
015 [Dx35) TIFRD - - - - - OCFoB OCFOA TOWD
Ox14 (Ox34) Rasarved = - - = — - - _
Ox 13 (Da33) Regerved — = = = — — —
0x12 [Ox32) Reserved — - = - - = = i
Ox11 (Ox31) Reserved — = - — - = = =
10 (De30) Resarved - - - - - - - -
Ox0F (0x2F) Resarved - - - - - — - -
OxOE {0x2E) Reaserved — — — — — — — —
Ox0D (0x2D) Reasrved — — — — — — —
0x0C (Dx2C) Regarved — — — — = = = —
Ow0B [Ox2E]} PORTD PORTDY PORTDE PORTDS PORTDY PORTD3 PORTDZ PORTD PORTDO a2
DDA [De2A) CORD DDD7? DDDE DODS [u]ulnl] DoD3 oDD2 DDD1 DoDa a2
oo [Die28) FIND PINDT PINDE PINDE PN PIND3 FIND2 PIND1 PINDO a2
QooB [Dne28) PORTC — PORTCE PORTCE PORTCA PORTC3 PORTCZ PORTC PORTCO a1
007 {Quec27) DORC - DDCE DOCE DDC4 DDC3 DDC2 Doct Doco pih]
006 [Dx26) PING - PINCE PINCS PINC4 PINC3 PINC2 PINCY PINCO 92
%05 [Dx25) PORTE PORTET PORTEG PORTES PORTE4 PORTBI PORTE2 PORTB1 PORTBO 9
D004 (Qc24) DDRE ooy DDBs DDBES DDB4 DDES DDB2 DDB1 DOED 91
D003 (Ouc23) PINE PINET PINEE PINES FINE4 PINES PINBZ PINEB1 PINED 9
D2 (0x22) Reserved - = - - — = = =
01 (Dx21) Reserved = = = = = = = =
Oxf (Dx2i) Reserved = = = = = = = =
6.3.7 Compare
cp Rd, Rs ;Form Rd-Rs to influence SREG Flags (0<d <31)
cpi  R4,K ;Form Rd-K to influence SREG Flags (16<d < 31)
tst Rs ;influence N and Z SREG flags based on Rs (0<d<31)

6.3.8 Jump: Unconditional

rimp K ;unconditional branch 12K words from current address
rcall K ;call to subroutine 2K words from current address
ret ;return from subroutine (STACK operation)

reti ;return from interrupt (STACK operation)

6.3.9 Skip: Conditional

sbic A,Db ;skip next statement if bit in IO register is clear
sbis A,Db ;skip next statement if bit in IO register is set
sbrc Rd,Db ;skip next statement if bit in Rd is clear

sbrs Rd,Db ;skip next statement if bit in Rd is set
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6.3.10 Branch Instructions
Branch instructions are employed with the intent of immediately altering the contents of Program
Counter (that is, the address of the next instruction to be executed) based on a flag, or combination of
flags in the Status Register as a result of the previous executable statement. Unlike the rcall

DESIGN ENGINEERING STUDIO
ICS4U - AVR OPTIMIZATION

instruction that returns control to the ‘what would have been the next instruction’ after the function
is complete, branch instructions alter the Program Counter permanently.

BRANCH INSTRUCTION 5

BRES 2 k Branch if Status Flag Set if (SREG(g) = 1) them PC+PC+k + 1 Mane 1/2
BRBC s k Branch if Status Flag Cleared if (SREG(s) = D) then PC—PC+k + 1 Mone 12
BREQ k Branch if Equal if{Z=1)then PC« FPC+k+1 Mong 1/2
BRNE k Branch if Mot Equal if (Z=0jthen PC ¢ PC+k+1 MNane 12
BRCS K Branch If Carry Set if(C=1)then PC+ PC+k+1 Mane 1/2
BRCC L3 Branch if Carry Cleared if(C=0)thenPC+ PC+k+1 Mone 112
BRSH k Branch if Same or Higher if(C=0)then PC - PC+k+1 Mone 1i2
BRLO k Branch if Lower if{C=1)thenPC« PC+k+1 Mane 1/2
BRMI k Branch if Minus if(N=1)then PC+« PC+k+1 Mane 12
BRPL K Branch if Plus iFiIN=0)thenPC+ PC+k+1 Mone 1/2
BRGE k Branch if Greater or Equal, Signed if (N & W= 0) then PC « PC +k+1 MNone 172
BRLT k Branch If Less Than Zero, Signed if(N@&V=1)then PC  PC + k+1 Mane 1/2
BRHS 13 Branch if Half Carry Flag Set if(H=1}thenPC+ PC+k+1 Mone 12
BRHC K Branch if Half Carry Flag Cleared ifiH=0)then PC+ PC+k+1 Maong 12
BRTS k Branch if T Flag Set if (T =1)then PC« PC+k +1 Mone 1/2
BRTC L3 Branch if T Flag Cleared if (T = 0) then PC « PC + k+ 1 Mang 1/2
BRVS 3 Branch if Overflow Flag is Set iFiv="1)thenPC+— PC+k+1 Mang 1/2
BRVC k Branch if Overflow Flag is Cleared if (V= 0)then PC «~ PC+k+1 MNang 1i2
BRIE k Branch if Interrupt Enabled if{1=1)then PC— PC+k+1 Mane 1/2
BRID k Branch if Interrupt Disabled ifil=0)thenPC+—PC+k+1 Mang 1/2

SREG - AVR Status Register
LH[T[H]s[vIN]z][C]

EEEIENEIE

1 s e o |

1 s s Z

0 s [

[T E I EE]

(IR E]E]

[TRNE I EE]

[T EE

I CEITEE]

T work 8 Sceased ueder e Craathe Commons Annbusion-ShareARks Licesss.
To wew 2 copy of this Scease, viait bap:'creathvecommons org Scecsea by-32 3.0

BRBC - Branch if Bitin SREG is Cleared
BRBS- Branch if Bitin SREG is Set

BRCC - Branch if Carry Cleared
BRCS- Branch if Carry Set

BRSH- Branch if Same or Higher (Unsigned)
BRLO - Branch if Lower (Unsigned)

BRNE - Branch if Not Equal
BREQ - Branch if Equal

BRPL - Branch if Plus

BRMF- Branch if Minus

BRVC - Branch if Overflow Cleared
BRVS - Branch if Overflow Set

BRGE - Branch if Greater or Equal (Signed)
BRLT- Branch if Less Than (Signed)

BRHC - Branch if Half Carry Flag is Cleared
BRHS - Branch if Half Carry Flag is Set

BRTC- Branch if the T Flag is Cleared
BRTS-Branchifthe T Flag is Set

BRID — Branch if Global Interrupt is Disabled
BRIE - Branch if Global Interrupt is Enabled

§-Bat AVR Coodisional Ecacch Ieswrocsionavad
28 September 2009
© 2009 Docaid Weamae
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6.4 Signed Representation of Numbers
Due to the limitations of hardware it is simply not practical to maintain the normal arithmetic
conventions of + and - signs as indicators of positive and negative numbers.

Even if that were possible, in designing a technique for the signed representation of numbers,
computer engineers realized that whatever they came up with should place no additional burden
on arithmetic operations for positive and negative operands.

Although a number of strategies have been employed for the signed representation of, binary
numbers is two’s complement algorithm.

6.4.0 Two’s Complement

The accepted process of negation for binary numbers is referred to as the two’s complement
algorithm. This is a two-step process by which you form the one’s complement first and then add 1.
Three examples appear below. Explain each one in terms of it’s decimal equivalent.

Original Value 11000010 10000000 10101011
One's Complement 00111101 01111111 01010100
Add 1 00111101 01111111 01010100

+ 2 | + 1 + 1

00111110 10000000" 01010101

Two's Complements

Note that the value 10000000 is its own two’s complement value! What to do? Since the msb is 1
computer engineers decided that, to be consistent, it should be interpreted as a negative number,
and the largest number in the range at that! This is why signed integer ranges are always
asymmetric asin, =128 <n < 127, —-32768 < n < 32767, etc.
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6.5 Expressions

AVR expressions are constructed from numeric constants, operators, labels (addresses) and
functions.

6.5.0 Operators

https://www.microchip.com/webdoc/index.html

Operator Description Precedence Assoc Example

! Logical NOT 14 None 1di rlé,!0xf0 ;Load rlé with 0x00
~ Bitwise NOT 14 None 1di rl16,~0xf0 ;Load rl6 with 0xOf
- Unary Minus 14 None 1di rlé6,-2 ;Load -2(0xfe) in rl6
* Multiplication 13 Left 1di r30,label*2;Load r30 with label*2
/ Division 13 Left 1di r30,label/2;Load r30 with label/2
% Modulo 13 Left 1di r30,label%2;Load r30 with label%2
+, - Add, Sub 12 Left 1di rl7,cl-c2 ;Load rl7 with cl-c2
<<, >> Shift left, 11 Left 1di rl7,cl>>c2 ;Load rl7 with cl
right shifted right c2 times
<<=>>= Sign: 0 or 1 10 None ©ri rl8,bitmask*(cl<c2)+1l ;Or rl8
with an expression
== I= Sign: 0 or 1 9 None @andi rl9,bitmask*(cl==c2)+1 ;And rl9
with an expression
& Bitwise AND 8 Left 1di rl8,high(cl&c2) ;Load rl8 with an
expression
A Bitwise XOR 7 Left 1di rl18,low(cl”c2) ;Load rl8 with an
expression
I Bitwise OR 6 Left 1di r18,low(cl|c2) ;Load rl8 with an
expression
&& LogEalAND 5 Left 1di r18,low(cl&&c?2) ;Load rl8 with an
expression
|| LogkalOR. 4 Left 1di r18,low(cl||c2) ;Load rl8 with an
expression
7. Ternary 3 None 1di rl1l8, a > b? a : b ;Load rl8 with

the maximum numeric value of a and b.
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6.5.1 Expression Separation Functions

The AVR Assembler offers a number of built-in functions to facilitate your coding. A useful
collection of functions allows you to separate bytes and words from larger expressions. Here is a list
taken from the,

AVR Assembler’s User’s Guide (https://www.microchip.com/webdoc

Functions defined for the assembler.

* | OW({expression) returns the low byte of an expression

* HIGH({expression) returns the second byte of an expression

* BYTEZ2(expression) is the same function as HIGH

+ BYTE3(expression) returns the third byte of an expression

* BYTE4(expression) returns the fourth byte of an expression

* LWRD{expression) returns bits 0-15 of an expression

* HWRD{expression) returns bits 16-31 of an expression

* PAGE({expression) returns bits 16-21 of an expression

+ EXP2{expression) returns 2 to the power of expression

* LOG2({expression) returns the integer part of log2{expression)
* INT(expression) Truncates a floating point expression to integer {i.e. discards fractional part)

* FRAC{expression) Extracts fractional part of a floating point expression (i.e. discards integer part).

The last four functions support your mathematics algorithms.

RSGC ACES Universal Shield V1: R2R Ladder as a DAC
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6.6 Variables

Variables required an identifier (address) and storage space (bytes).

Alabel serves as the variable’s identifier and bytes of storage can be set aside in any of the three
memories (Program Flash, SRAM or EEPROM) through the use of assembler directives.

6.6.0 Variable Use in SRAM

This example demonstrates the use of byte-size variables in SRAM. Use of the . DSEG and .BYTE
assembler directives ensure the storage for the count variable is located in SRAM. The assembly
instructions 1ds and sts are the load and store instructions for SRAM addresses.

rsgcaces > AVROptimization > 2 Small Steps > VariablesSRAM.asm @

The screen capture below was taken at the end of a debug session with the Memory and Processor
Windows (Debug>Windows>etc.) revealing the contents of their respective locations.

Notes.

e The SRAM free memory map begins at 0x0100 as expected and without the use of the
.org directive this is default location of the where the value is loaded.

e Aninline expression is used to calculate the target address of an sts instruction.

e The swap instruction interchanges the high and low nibbles of a byte.

1N fE
2 * VariablesSRAM.asm ; ,
3| % Created: 8/12/2018 3:32:09 PM R ot AN |
2] * Adthor: Chris D'Arcy 9 ab ba 80 0@ 0@ 80 00 00 80 «2....... -
50 */ O rocessor =F
6 .DSEG 0 pame Value
7| count: 09 RO.S 5,56
8] .BYTE 2 jreserve two bytes in SRAM 08 RO 0x00
9] .def util=rle ;provide an alias for rlé oe rio 000
19| .CSEG s 0:00
11, .org 0x0080 oy R12 00
12 rimp reset og 3 s —
13] .or @x0100 oq T i
g y R15 000
14 reset: = 0 pig 0xAB £
15 1di util,@xAB  jprepare a sample value for stdata @x0153 @9 |
16 sts count,util ;an 'assignemnt' statement Ri8 000 =
17 lds rl7,count jretrieve the value from SRAM gz gﬁg
18 swap rl7 ;perform some verifiable operation o 0500
19 sts count+1,rl7 ;store the modified byte value
28 rimp reset

6.6.1 Variable Use in Program Flash and EEPROM

The ATmega328P offers just under 2 KB of SRAM. This space has to accommodate variables as well
as the Stack which grows from the end of SRAM (0x8FF), upwards.

If SRAM space for your variables gets tight, you can consider using Program Flash or even EEPROM
as a source of additional storage. The . DB, .DW, . DD, and . DQ assembler directives are used to
reserve space in Program Flash or EEPROM.
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6.6.1.0.DB

(From online help)Define constant byte(s) in program memory and EEPROM. The DB directive
reserves memory resources in the program memory or the EEPROM memory. In order to be able to
refer to the reserved locations, the DB directive should be preceded by a label. The DB directive
takes a list of expressions, and must contain at least one expression. The DB directive must be
placed in a Code Segment or an EEPROM Segment.

The expression list is a sequence of expressions, delimited by commas. Each expression must
evaluate to a number between -128 and 255. If the expression evaluates to a negative number, the
8-bits twos complement of the number will be placed in the program memory or EEPROM
memory location.

If the DB directive is given in a Code Segment and the expression-list contains more than one
expression, the expressions are packed so that two bytes are placed in each program memory
word. If the expression-list contains an odd number of expressions, the last expression will be
placed in a program memory word of its own, even if the next line in the assembly code contains
a DB directive. The unused half of the program word is set to zero. A warning is given, in order
to notify the user that an extra zero byte is added to the .DB statement.

6.6.1.1 .DW

Define constant word(s) in program memory and EEPROM.

The DW directive reserves memory resources in the program memory or the EEPROM. In order to
be able to refer to the reserved locations, the DW directive should be preceded by a label. The DW
directive takes a list of expressions, and must contain at least one expression. The DB directive
must be placed in a Code Segment or an EEPROM Segment.

The expression list is a sequence of expressions, delimited by commas. Each expression must
evaluate to a number between -32768 and 65535. If the expression evaluates to a negative
number, the 16-bits two's complement of the number will be placed in the program memory or
EEPROM location.

6.6.1.2 .DD
Define constant double-word(s) in program memory and EEPROM.

This directive is very similar to the DW directive, except it is used to define 32-bit (double-word).
The data layout in memory is strictly little-endian.

6.6.1.3.DQ

Define constant quad-word(s) in program memory and EEPROM.

This directive is very similar to the DW directive, except it is used to define 64-bit (quad-word).
The data layout in memory is strictly little-endian.
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6.6.1.4 Example: Variable in Flash

The example below makes use of the four assembler directives that both reserve storage space in
Program Flash and initialize the byte contents at the same time.

rsgcaces > AVROptimization > 2 Small Steps > VariablesFlash.asm @

Once the VariablesFlash projectis created, select the Simulator Tool and use the debugger to

step through the code. Be sure to have the Memory: Program Flash and Processor windows open
(Debug>Window>...)

Solution Explorer Properties VariablesFlash VariablesFlash.asm %
1 ¥ Processor *OX
2 * VariablesFlash.asm Name Valize
= 3 R16 Ouedl
4 % Created: 8/14/2018 6:29:39 AM i 200
5 ® Author: Chris Darcy Ri§ 0:00
6 *f R19 0:00
7] .def util=rl6 ;provide an alias for rié6 R20 0x00
8| .CsEG 2 i)
R22 0:00
g .org Ox0000 R23 000
18 rimp reset R24 000
11§ ;Flash Variables... R25 0:00 =
12 .org 2x0838 R26 000
13 wvars: .DB 'A', 255, 0b@1016181, -128, Oxaa, "ab", @ &7 L 1
14§ words: .Dli ©x5876, ©8bl108111008810181681, -32768, 65535 zz gﬁg 3
15! dwords: .DD 8, ©xfadebeef, -2147483648, 1 << 30 R30 061
16 qwords: .DQ @,0xfadefeeddeadbeef, 1 << 62 =
17| .org  ©x0060 Memary1 a2
18 reset: Memory: |prog FLASH '||
19 1di ZH,high(vars<<1) sthe 1pm {prog 8x8808 5f c@ ff ff ff ff £f £ ff “fEster
20 1di ZL,low(vars<<1) ;addressefprog 8x8805 ff ff ff ff ff ff £ £ £
21 lpm util,Z+ ;Step thrdprog 8x8012 ff ff ff ff ff ff £ff £ ff
22 lpm util,Z+ swatch ridprog 8x8018 ff ff ff ff ff £ff £ff £f £
23 lpm util,Z+ ;1pm Z+ ifprog 8x8824 ff £f ff £f ff £f £ff £ £ hcrement
24 1pm util,Z+ swhich mafprog 8x8820 ff ff ff ff ff ff £ff £f £ _Fogram Flash
25 lpm util,Z+ 5 prog exee3e ff ff ff ff ff ff £f £f £ {
6 lpm util,z+ ; prog @x0e3F ff ff ff ff ff ff ff ff ff
27 lpm util,z+ ; prog @xee4s ff ff £ff ff ff ff £ff ff ff
28 lpm util,Z+ F prog exeesl1 ff ff ff ff ff ff £ff £f
29 rimp reset sredo prog @xeasA ff ff ff ff ff ff 41 ff 55
0w e prog Bx0063 80 aa 61 62 @@ 76 58 55 9¢ <€2ab.vXUe .
6.6.1.4.0 Questions

1. What is meant by little and big endian?
2. What is the AVR byte order (little or big endian)?
2. The first executable instruction, rjmp reset, appearsas 5f cO. Interpret these contents.
3. Identify the byte address of vars
4. What is the most efficient way express the largest possible positive value for,
a) adouble word (.DD)
b) aquad word (.DQ)
5. Explain Lines 19 and 20.

6. How is the decimal value —32768 stored? Explain this.
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6.7 Arrays

An array declaration reserves a contiguous block of storage under a single identifier that is used to
identify the base address of the storage block. Initialization of the elements is optional.

The requirement that the data in an array to be homogenous enables the index of each cell to be
used to determine the address of the element as an offset from the base address.

6.7.0 C Array Example

Let’s start with familiar high-level C code that declares and initializes an integer array, before
proceeding to total the contents. A complete debugging session leaves SRAM in the state shown.

rsgcaces > AVROptimization > 2 Small Steps > CArrayExamplel.c @

Disassembly Solution Explorer Properties ArrayExamplel ArrayExamplel.c X

o ArrayBxamplel.c '| = lﬂ) ChUsers\Chris Darcy’\Documents\ MyAtmelStudio® ArrayExamplel\ ArrayExamplel \ArrayExamplel .c
L
2 * ArrayExamplel.c : =
3 * Memory: |data IRAM '||
4 * Created: 8/17/2018 8:16:22 AM |data ©Bx@lee 10 @2 4d 28 6b 90 f2 05 8@ ..M(k.d.. =
5 ¥  puthor: Chris Darcy data 9x0109 ©0 0P 0 02 00 00 €0 ee 88 .._........
6 * / data 9x0112 ©0 90 B 02 €0 60 ee ee 88 .........
7 data 9x011B ©0 0P ©Be 02 00 00 €0 ee 88 .._........
8! #include <avr/io.h> data 9x0124 ©0 90 00 96 00 00 88 86 68 .........
9 uint8 t A [] = {16,2,77,40,187}; data Bx812D ©0 00 00 0D 0 02 @0 Ve B0 ......... [
18) uwint8_t B [] = {0x28,0x30}; data BxB8136 0O PO PO 00 P OO @6 88 B0 .........
11} uwint8_t i, sum = @; data Gx813F ©O 0O B0 00 00 00 @0 @8 68 .........
12 Zint main(void) data Gx8148 ©0 9O 00 00 00 00 €0 @8 08 .........
138 [{ data 6x0151 ©0 90 80 00 00 60 60 88 V8 .........
14 for(i=@; i<5; i++) data 6x0154 00 90 80 00 00 00 €0 @8 V8 ......... I
115 sum+=A[1]; B Memory 1 JERNESEL
16§ | }

6.7.0.0 Comments and Observations from C Array Example
Some notable aspects from the graphic above include the following,

1. Line 9: The storage for the byte array A is located within SRAM and starts at @0x0100,
immediately following the bank of 256 registers (32 GP, 64 10 and 160 Extended)

2. Line 9: The byte order of the array matches the initialization order

3. Line 9: The assembler maintains storage allocation to even byte boundaries. Since an odd
number of elements were defined, it pads the storage with an extra byte (@0x0105)

4. Line 10: Although the byte array B is declared and initialized, since the assembler recognizes
that it is never referenced, no storage is set aside for its use.

5. Line 11: The assembler appears to use a JIT (Just in Time) storage allocation strategy. Although
the variable i is declared before the variable sum, only the latter’s value is known at this time,
so it is given the next available free address, @0x0106. Stepping through the code, you’ll notice
the updating of SRAM is suspended until the loop is finished.
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6. Line 16: Immediately following the end of the main method, the disassembled version appears.

--- C:\Users\Chris Darcy\Documents\MyAtmelStudio\ArrayExamplel\ArrayExamplelDebug/.././ArrayExamplel.c

a2
e
ae
ae
e
ae
ae
ae
ae
ae
ae

{ . N Memory 2

99808053 LDS R13,0x01e6 Load direct from data space

00000055 LDI R3@,0x00 Load immediate Memory: | data RAM

90080056 LDI R31,0x01 Load immediate data @x@1e0 1@

9008057 LDI R24,0x85 Load immediate data @x@1e9 @e

90080058 LDI R25,0x81 Load immediate data @x@112 @@

sum += A[i]; data 8x011B ee

90peBe59 LD R19,Z+ Load indirect and postincrement data Bx0124 @@

©000085A ADD R18,R19 Add without carry data 0x@12D @e
for(i=0; i<5; i++) data ©x0136 @@

©000BOSB CP R30,R24 Compare data @x@13F @@

--- C:\Users\Chris Darcy\Documents\MyAtmelStudio\ArrayExampl data oxelas @@

©000085C CPC R31,R25 Compare with carry data exels1l ee

0000005D BRNE PC-0x04 Branch if not equal data exel5A oe

9000ROSE STS 0x0186,R18 Store direct to data space B Memory1

0000eece LDI R24,8x Load immediate

ggeoeecl STS exe1e7,R24 Store direct to data space

1

eeeeees3 LDI R24,8xee Load immediate

geeeeesa  LDI R25,8x88 Load immediate

Bevpeess RET Subroutine return

6.7.1 Data Indirect Addressing Modes

ad
2o
2o
[=1]
0e
2e
ee
2e
ee
ee
ee

28
00
20
=%]
20
00
ee
2o
29
ee
ee

1]
oe
oe
oe
oe
oe
ee
ee
ee
ee
ee

ae
ae
ae
ae
(]3]
(]3]
aa
aa
aa
ea
(]3]

f2
e
20
ee
e
e
ee
ee
e
ee
e

a5
0o
0o
0o
00
00
ee
08
08
ee
ee

Beyond their use as general purpose registers, the two-byte combinations R27:R26, R29:R28, and
R31:R30 are given aliases (X, Y, and Z, respectively), for the purpose of facilitating the addressing of

memory. These registers serve as 16-bit address pointers for indirect addressing of SRAM.

15 XH XL 0
X-register I 7 0 I 7 0 I
R27 (0x1B) R26 (0x1A)
15 YH b4 8 0
Y-register I 7 0 I 7 0 I
R29 (0x1D) R28 (0x1C)
15 ZH ZL 0
Z-register I 7 0 I 7 0 I
R31 (0xIF) R30 (0x1E)
Look back at the disassembled version of the C ;S ;16;‘2;
' Dala Space
array example at the top of this page, in - 00000
15 0
particular Lines 55 and 56. Explain what this is X.YORZ-REGSTER |
doing.
Explain lines 57 and 58.
[ 1] +
Explain the body of the loop: lines 59 to 5D.
RAMEND

Explain the exit of the loop: lines 5E to 61.

PAGE 60

AVR OPTIMIZATION: 2022-2023 RSGC ACES



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION

6.7.2 Assembly Example

With a working knowledge of the high-level C array example above, we take on the assembly
equivalent. In doing so, we optimize where we can.

rsgcaces > AVROptimization > 2 Small Steps > ArrayExamplel.asm @

/*

* ArrayExamplel.asm

* Created: 8/18/2018 8:21:17 AM
* Author: Chris Darcy

*/
.DSEG ;
.BYTE 6 ;reserve an even number of bytes in SRAM
.CSEG
.org 0x0000
rjmp copy
.org 0x0030
A: .DB 16,2,77,40,107,0 ;define and initialize the array, A
Aend:
.org 0x0100
copy: ; .BYTE does not permit initialization
1di ZL, low (A<<1) ;we frst copy from program flash to SRAM
1di ZH,high (A<<1) ;lpm instruction requires Z register
1di YL, low (ARend<<1) ;point Y to the end of the array
1di YH, high (Aend<<1l) ;
clr XL ;point X to the start of SRAM
1di XH,0x01 ;
lpm r0, Z+ ;Load from program memory and postincrement
st X+,r0 ;Store indirect and postincrement
cp ZL,YL ;end of the array? Compare low bytes
brne PC-0x03 ;branch if not equal
;leave X at first address after array
clr rl8 ;zero a register for sum prior to accumulation
clr ZL ;point Z to the beginning of the array
1di ZH, 0x01 ;SRAM address: 0x0100
1d rlS, Z2+ ;get the (next) element of the array
add rl8,rl9 ;add it to the running sum: sum += A[i];
cp ZzL, XL ;end of the array? Compare low bytes
brne PC-0x03 ;branch if not at end
st Z,rl8 ;store sum in SRAM
wait: rjmp wait ;done. ..

2.7.2.0 Comments and Observations from Assembly Array Example
1. Comparing this assembly version with the disassembled version of the C code, identify as many
improvements, efficiencies, or optimizations that you can.
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6.8 If...then...else

For practice using branch instructions, consider codingan i f. . . then..else structure in
assembly. Specifically, place an RGB LED in pins 10 through 13 of you Arduino. Obtain a value for
temp and display the red LED if it's greater than 25°, and the blue LED if it’s less than 15°.

rsgcaces > AVROptimization > 2 Small Steps > IfThenElse.asm @i)

* IfThenElse.asm

* Created:
* Author:
*/

.def
.def
.equ
.equ
.equ
.equ
.equ
.equ
.o0rg

8/8/2018 3:19:27 PM
Chris Darcy

util =
led
COOL
WARM =
temp
red =
gnd =
blue =
0x0000
rijmp reset ;
.org 0x0100
reset:
rcall initPORT ;
again:
rcall getTemp ;
cpi rle,COOL ;
brmi sayCool ;
cpi rl6,WARM ;
brpl sayWARM ;
rijmp again ;
sayCool:

rl6 ;
rl7 ;
15 ;
25 ;
10 ;
1<<PB2 7
1<<PB3 7
1<<PB5 7

1di
out
rijmp
sayWarm:
1di
out

rjmp

initPORT:
1di
out
ret

getTemp:
1di
ret
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led,blue
PORTRB, led
again

led, red
PORTB, led
again

util, red|gnd|blue

DDRB,util

rle6, temp
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6.9 Loop

Aloop is a structure in which a block of statements is repeated until an event occurs. In high-level
languages the event is coded as a boolean expression (aka. condition).

If the number of repetitions (aka iterations) is not known in advance, the convention is to code the
structure using the while keyword.

If the number iterations is known in advance, the convention is to code the structure using the for
keyword.

Assembly languages do not have data types, per se, so a boolean expression is reduced to an
interpretation of the state of one or more flags of the Status Register.

6.9.0 for Loop

Here’s an example of how you might code a for loop that iterates from 9 to 0 inclusive, mimicking
the C statement, for (uint8 t i=0; i<10, i++).

rsgcaces > AVROptimization > 2 Small Steps > folLoop.asm @

/*
* forLoop.asm
* Performs 10 iterations (5 cycles) of Blinking LED on pin 13
* Author: Chris Darcy

*/

.equ START = 0 ; lower bound of for loop

.equ END =10 ;upper (exclusive) bound of for loop
.def index = rl8 ;index of the for loop (lcv)

.equ PIN13 = 1<<PB5 ;visual confirmation of iteration
.def util = rlé6 ;generic utility register

.def led = rl7 ;led register for toggling purposes

.0rg 0x0000
rijmp setup
.0rg 0x0100

;let's use the Arduino C terminology
;well past the interrupt jump vector table

setup:

1di led, PIN13 ;one-time code

out DDRB, led ;set PORTB bit 5 for output (pin 13)
loop:

clr util

out PORTB,util ;start with LED on pin 13 OFF

1di index, START ;initialize loop control variable
forLoop:

cpi index, END ;are we finished?

breg exit ;if so, exit the for loop

eor util, led ;body of the for loop: toggle state of pin 13

out PORTB, util ;display it

rcall delayls ;admire

inc index ;advance the loop control variable

rjmp forLoop ;back to the top of the for loop
exit:

rcall delayls ;admire

rcall delayls ;admire

rcall delayls ;admire

rijmp loop
delayls: ;included in download
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7 AALP: Arithmetic and Mathematics

The table of Arithmetic and Logic Instructions below is taken from Atmel’s AVR 8-bit Instruction Set
Manual.

http://mail.rsgc.on.ca/~cdarcy/Datasheets/InstructionSetSummary.pdf

Mnemonics Operands Description ’ Operation ] Flags ’ #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd « Rd + Rr ZECNVH 1
ADC Rd, Rr Add with Carry bwo Rd+«Rd+Rr+C ZCNVH 1
ADIW Rdl K | Add Immediate to Word Rdh:Rdl « Rdh:Rdl + K ZONVS 2
SUB Rd, Rr | Subtract two Registers Rd « Rd - Rr ZCNVH 1
SUBI _Rd, K | Subtract Constant from Register | Rd+Rd-K ZCNVH 1
SBC i Rd. Rr 1 Subtract wﬂ_h (_Za_rry two Re_gis_n?rs | Rd_d—_ Rd - R_r -C ZCNVH 1
SBCI Rd, K | _Subtract with Carry Constant from Reg. Rd+ Rd-K-C ZCNVH 1
SBIW _ RdlK | Subtract Immediate from Werd | Rdh:Rdl « Rdh:Rdl - K ZCNVE 2
AND Rd Rr 1 ngiclal AMND Registers | Rd « Rd « Rr Z.!‘J_.V 1
ANDI Rd, K | Logical AND Register and Constant Rd < Rd « K ZNV 1
OR Rd, Rr | Logical OR Registers Rd «— Rd v Rr ZMNNV 1
ORI Rd, K Logical OR Register and Conslant Rd « Rd v K ZNV 1
ECR _Rd, Rr | Exclusive OR Registers | Rd+« Rd@&Rr ZNV 1
COM Rd | Cne's Complement Rd + 0xFF - Rd ZC NV 1
MNEG Rd | Twio's Complement Rd « 0x00 - Rd ZCNVH 1
SBR Rd, K | SetBitis) in Register RdeRdv K ZNV 1
CER RdK | Clear Bit{s) in Register Ril « Rd » {0%FF - K) ZMN 1
INC Rd | Inerement R+« Rd + 1 ZNV 1
DEC Rd | Decrement Rd « Rd - 1 ZNV 1
TET Rd | Test for Zero or Minus Rd « Rd « Rd ZNN 1
CLR Rd | Clear Register Rd « Rd & Rd ZNV 1
SER R | SetRegister | Rd e OFF Nane 1
UL Rd, Rr Multiply Unsigned R1:R0 +« Rdx Rr ZC 2
MULS Rd, Rr | Multiply Signed R1:R0 « Rd = Rr ZC 2
MULSU Rd, Rr | Muitiply Signed with Unsigned R1:R0 « Rdx Rr Z.C 2
FMUL _Rd, Rr | Fractional Multiply Unsigned | R1:RD « (Rd x Rrj == 1 2c 2
FMULS _Rd, Rr | Fractional Multiply Signed | RIR0« (RdxRrj =<1 Z.C 2
FMULSU Rd, Rr | Fractional Muliiply Signed with Unsigned R1:R0 « (Rd x Rr) =<1 ZC 2

7.0 Terminology: Overflow and Underflow

Like the odometer on your car, when you go past the maximum value your display can represent
the count simply rolls over and the counting starts again at 0. In computing, when an arithmetic
operation on an MCU results in a value too large for the target register to contain we refer to this as
an overflow condition.

The interpretation of the term underflow depends on the context. For fixed point numbers
(integers), such as the 8-bit registers we are using, an underflow condition is said to occur when the
value would be less than the minimum value an integer (register) can hold (0). For floating point
numbers, an underflow condition occurs when the result of an arithmetic operation results in a
value too close to zero to distinguish it from the same.
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7.1 Adding or Subtracting One from a Register

Incrementing and decrementing a register, the hallmark of counting and loop control, is best
accomplished through the dedicated instructions inc and dec. Each instructions requires only a
single register from r0 through r31. Overflow and underflow conditions will generate SREG flag
responses that can be monitored with branch instructions.

7.2 Multiplying and Dividing a Single Byte by a Power of 2

Just as shifting the digits to the left or right of a decimal number has the effect of multiplying or
dividing by a power of 10 so, too, does shifting bits in a binary number have the effect of doing the
same for powers of 2. Furthermore, hardware circuits are embedded within the processor’s
hardware to expedite the process. Not surprisingly then, the following instructions figure
prominently in low-level multiplication and division routines.

Mnemonics I Operands J Description | Operation l Flags I #Clocks
BIT AND BIT-TEST INSTRUCTIONS
LSL | Rd | Logical shift Left [ Rd(n+1) « Rd(n). Rd(0) 0 [ zenv | 1
LSR Rd Logical Shift Right Rd(n) « Rd(n+1), RA(7) « 0 ZCNV 1
ROL Rd Rotate Left Through Carry Rd(0)«-C,Rd(n+1)« Rd(n),C«-Rd(7) ZCNV 1
ROR Rd Rotate Right Through Carry Rd(7)«C,Rd(n)} Rd(n+1),C«Rd(0) ZCNV 1
ASR Rd Arithmetic Shift Right Rd(n) «- Rd(n+1), n=0...6 ZCNV 1

7.2.0 Multiplying a Single Byte by a Power of 2

In this example, the intent is to multiple a single byte by four. Recognizing this operation could
result in two-byte, 16-bit outcome, we designate a registers as the high byte of the eventual product
and clear it at the outset. The 1s1 (logical shift left) instruction is used on the lower byte because it
will shift the contents one bit to the left, a zero is shifted into the lowest bit and the highest bit is
shifted into the carry flag. We immediately employ a rol (rotate left though Carry) instruction
command on the high byte because it will also shift contents one bit to the left, but it will shift the
contents of the Carry Flag into the lowest bit. Every time we shift the multiplicand to the left we are
multiplying by two. So, to multiply by four we simply repeat this pair of instruction.

IEESEEa e
1/
2 * MultiplySingleBytebyPowerof2.asm
3 * This example quadruples the multiplicand
4 * originally placed in the AH:AL register pair
5 * Created: 8/19/2018 5:01:32 PN NN —
[ * Author: Chris Darcy N Vadisa
% il 000000
8| .def  Al=ri6 bt ODMEE e Sl
3 .def  AH=r17 X Register 00000 Memory: | data REGISTERS -
10 .set multiplicand = 100 ¥ Register 0:0000 data ©xPPE0 9O OO 90 90 PG 09 00 09 80 ......... B
11] .org 8x0008 Z Register: (1000 data 0xP009 90 @0 00 00 00 09 00 2990 1 .........
12 i peser 5(“;::':?:5:::” ?@@ data ©x0012 9@ 00 00 60 0P 60 00 89 00 .........
13| reset: Fianints ST data ©x001E 90 0 90 90 92 02 00 09 80 .........
14 1di AL,multiplicand Stop Watch 7.00 ps data Bx0824 00 60 0@ 00 60 08 00 08 80 .........
15 clr AH B Registers data ©x0020 0@ 0@ GG GG 00 60 60 60 80 .........
16 1s1 AL — 00 data ©x0E36 0P OO GG GG 0O 6O 60 00 80 ......... I
17 rol AH RIL e data ©xPP3F 9P OO 90 90 99 09 00 09 80 .........
18 1s1 AL RO2 0:00 data ©xP945 9O OO @0 90 09 69 60 09 80 .........
19 ol H E] 0:00 data ©x0051 90 @@ @0 @1 9@ 60 00 00 80 .........
20] wait: Ro4 000 data 0xP054 @0 @0 @@ ff 08 09 00 00 €0 ...J¥.....

@ 2 e s Lo data 0x0063 @0 90 00 00 00 00 09 00 00 .........

data 6x0P6C 0@ GG AG GG 08 60 60 60 80 .........
at o Owonyo A8 80 _Af A8 A8 A6 A8 06 A6 X
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7.2.1 Dividing Two-Byte (Word) Dividend by a Power of 2

The AVR Instruction Set does not contain a divide instruction. This must be accomplished,
manually. Later on we’ll tackle general divisors but, for now, we'll restrict ourselves to dividing by
powers of 2. As with multiplication, division of binary numbers by powers of 2 can be accomplished
by shifting bits to the right. To make things more interesting, we’ll start with the 16-bit product of
our previous example (400) as our initial dividend. It should be apparent that we are simply
undoing the multiplication steps.

The 1sr (logical shift right) instruction is applied to the high byte because it will shift the
contents one bit to the right, a zero is shifted into the highest bit and the lowest bit is shifted into
the Carry Flag. We then employ the ror (rotate right though Carry) command on the low byte
because it will also shift contents one bit to the right, but it will shift the contents of the Carry
Flag into the highest bit. Every time we shift the dividend to the right we are dividing it by two.
So, to divide by four, we simply shift the entire dividend to the right two times.

T

1 Y

2 * DivideTwoByteDividendby4.asm

3 * This example divides the dividend by 4

4] * (Created: 8/19/2018 5:48:11 PM

5 * Author: Chris Darcy e

5 ! MName Value

7 -def AL=r16 Program Counter  0x:00000007

8] .def AH=r17 Stack Pointer 008FF

9] .set dividend = 400 X Register 00000 Memary: |data REGISTERS -1l

18] .org 0x8000 ¥ Register 00000 data 00000 @O @2 9@ 0P 00 00 00 08 @8 ......... -

11 rimp reset ;Rteg‘ier_t xﬂﬂ data ©x0009 ©° 00 90 06 00 0 90 64 88 ....... d.

12| reset: C;c;-:c:ug:;::l'r ?....@@!. dats 0x0012 @0 98 00 00 PO 0O 08 00 00 .........

13 1di AL, low(dividend) oy T data Ox0015 90 08 P8 89 PO PP 00 00 88 .........

14 1di AH,high(dividend) Stop Watch 700 s data 0x0021 @0 02 9@ 0B 00 00 00 P00 88 .........

15 lsr AH B Registers data 0x0020 @€ @2 9@ 00 00 00 00 08 88 .........

16 ror AL o . data 00036 @O @2 9@ 0B 00 00 00 08 @8 ......... 3

17 1sr AH ROl 0400 data Gx@E3F @0 @8 08 68 0@ PP 00 08 @8 .........

18 ror AL RO2 0:00 data Ox0P18 90 08 PO 8P 90 PP 00 08 88 .........

19 wait: RO3 0x00 data 9x00951 @0 08 B8 81 90 0P 00 00 88 .........

20 rimp wait Ro4 000 data 0x0054 @@ ee ee ff 08 00 00 08 88 ...j.....
s = data ©x0063 @0 @0 00 08 08 00 00 08 00 .........

data Gx0REC 0O 08 0O 00 00 PP 06 R 88 .........
at o OeRe70 A8 A0 80 08 60 a6 88 66 A6 =~
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Care must be taken when employing arithmetic operations involving single byte registers to
appreciate overflow and underflow situations. When either condition is triggered, the C flag
within the SREG is set to allow you to recognize and respond to it in some manner.

7.3.0 Byte Addition with Overflow (Carry Flag)
This example serves to demonstrate an overflow condition triggered by the addition of two
registers in which the sum exceeded 255. The BRCS (Branch if Carry Set) instruction MUST
immediately follow the instruction that generated the condition. Note that the lower order 8 bits of
the sum (in A) remains accurate. Create the project, obtain the course code, and step through a
debugging session to experience it for yourself.

rsgcaces > AVROptimization > 2 Small Steps > SingleByteAddition.asm @

Processor

Name

Value

Program Counter  0x00000004

Stack Pointer
X Register

Y Register

7 Register
Status Register
Cycle Counter
Frequency
Stop Watch

= Registers

ROO
ROL
RO2
RO3
RO4
ROS

0x08FF

00000

00000

00000
DooaaEoE
I

1.000 MHz

4.00 ps

000
000
000
000
000
000

data
data
data
data
data
data
data
data
data
data
data
data
data

I
2 * SingleByteAddition.asm
3 * Designed to generate Carry H
il * Created: 8/19/2018 9:45:58
5 e Author: Chris Darcy
6 -7
7 .def A=r16
8 .def B=r17
9 L.org 0x0000
18 rjmp reset
11 reset:
12 1di A,128
13 1di B,129
14 add A,B
W 15 brecs overflow
16 wait:
17 rimp wait
18  overflow:
19 rjmp PC-1

ot o

Memory 1
Memory: | data REGISTERS

=000
2x0009
Bx8012
BxB8e1B
9x0024
Bx002D
Bx0836
BxBO3F
BxBe48
9x0e51
Bx085A
Bx00863
BxBe6C
2xpa7s

[505]
[55]
[55]
(=[]
00
[55]
[505]
[55]
ae
00
[55]
[515]
[515]
88

00
00
00
00
00
80
00
20
00
00
80
20
00
aa

[505]
[505]
[505]
[=l]
[505]
[505]
[505]
[505]
[=l]
[505]
[505]
[505]
[515]
[2]2]

00
00
00
20
00
(0]
00
00
(i}
a1
ff
00
00
aa

00
00
00
00
0e
00
00
(505}
00
00
19
(505}
00
a8

29
(1]
20
200
00
(1]
(1]
(1]
00
00
(1]
00
09
aa

(505}
e1
(515}
a0
00
(505}
(505}
(515}
a0
00
20
(515}
a0
2]z

SingleByteAddition.asm >

7.3.1 Byte Subtraction with Underflow (Carry Flag)

The difference between the two registers yields a value less than (0) triggering an underflow.

rsgcaces>AVROptimization> 2 Small Steps > SingleByteSubtraction.asm @

SingleByteSubtraction

Processor

Name
Program Counter
Stack Pointer
X Register
Y Register
Z Register
Status Register
Cycle Counter
Frequency
Stop Watch

= Registers
ROO

Value
0x00000004
ODBFF
0x0000
0x0000
00000
Joafus] s [oaln JedfC)
4
1.000 MHz
4.00 ps

data
data
data
data
data
data
data
data
data
data
data
data
data

o N S
2 * SingleByteSubtraction.asm
3 * Designed to generate underf]]
4 * (Created: 8/19/2018 9:47:05
5 * Author: Chris Darcy
6 */
7 .def A=r16
8 .def B=r17
S .org 9x0000
18 rimp reset
11 reset:
15 1di A,128
13 1di B,129
14 sub A,B
W 15 bres underflow
16 wait:
17 rjmp wait
18 underflow:
19 rjmp PC-1

o

Memory 1
Memory:

data REGISTERS

ox@eee
9x0009
9x0812
9x801B
Bx0024
Bx082D
BxB8e36
Ox003F
9x0048
BxB8e51
AOx005A
%0863
BxB8es6C
2xpaze

20
2o
[505]
20
2e
[505]
[<05]
20
[505]
(<]
20
[505]
[=l=]
28

[505]
ae
[505]
[505]
ee
[55]
[55]
a0
(505]
ae
a0
[505]
(=]
[=]2]

00
00
00
00
ee
00
00
00
00
00
00
00
(L]
[alz]

20
a9
(1]
20
ee
00
009
29
(1]
a1

00
20
a8

[505]
[l5]
[505]
[505]
ee
[505]
[505]
[50]
[505]
=]
(5]
[505]
(=]
[=]2]

FEmeeEEeS - - = = = =
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7.3.2 Unsigned Byte Multiplication with the MUL Instruction

The ATmega328P supports the MUL (Multiply Unsigned) Instruction. Any two registers (r0-r31) can
be used as operands and are left unaffected as the product is placed in the register pair r1:r0. The
instruction takes 2 clock cycles.

EpERT——T . -
o I
2 * SingleByteMultiplication.as Jzsn
3] * Created: 8/19/2018 1:48:96 Hame Velug BT
a ® Author: Chris Darcy Program Counter 000000004 Memory: | data REGISTERS 'H L0

Stack Pointer 0:08FF
5 */f X Register ot data Ox0E80 S0 46 90 60 00 08 ee
6! .def  A=ri16 Y Register 00000 data Ox@E00 00 80 00 00 A0 80 0
70 .def B=r17 Z Register 0:0000 data 0xGB12 00 80 90 00 00 80 0e
8| .org @x0000 Status Register  DDEEWRNEE |data 0x0015 00 60 90 00 00 9O 00
3 rimp reset CydeCounter, . £5 data 0x0824 00 86 90 00 6@ B8 08
10 reset: ;e“”e”“’ S XONKE data 9x002D0 00 @8 99 08 09 00 08
2 op Watch 5.00 ps

T4 1di A,128 3 Registers data 0xGB36 00 80 00 00 00 80 0
12 1di B,129 data Ox@B3F 00 66 90 00 00 B8 °e
13 mul A,B gg gﬁg data 0x0045 00 08 00 08 90 00 08
14 wait: o B data Ox@851 00 80 00 01 00 80 ee

' 15 rjmp wailt RO3 000 data @xB85A ©0 00 00 T 08 00 ©0
16 RO4 0:00 data Ox0B62 00 86 00 00 00 B8 °e
alg) ROS 2:00 data OxPOEC 99 89 AA 08 PO P8 B8
18 ot o O-QnJo AR AR A6 AR AR A6 B6

7.3.3 Signed Byte Multiplication with the MULS Instruction

In this example, the product of two negative operands yields a positive product that replaces the
source operands,

pUNpRa——— . = . = _  _ |
1/
E: g ] > o q Processor
: 5 SingleByteSignedMultiplicat R o Ve
4 * Created: 8/19/2018 2:07:28 ztr:cgkrapn:i:to;nter gﬁgggooos Memory: | data REGISTERS -1 )
5 %  Author: Chris Darcy o pipid data 0x0000 50 eb @@ B0 @0 @@ 00 @0 @8 PE...... -B
6 ¥ ¥ Register oo data 0x0009 00 00 00 00 @@ @0 €0 50 eb ....... P&
71 def  A=ris 7 Register 0000 data 0x0812 ©0 00 00 00 00 60 €0 00 00 .........
8l .def B=r17 StatusRegiter  DDEEDEEE |detz 0x0018 00 90 @0 60 00 G0 00 80 0 .........
I org 9x0008 Cycle Counter 6 data 0x0824 00 00 00 00 00 @0 €0 00 00 .........
10 rimp reset Zeq“E"W 1.000 MHz data 9x0020 00 00 00 00 00 00 00 09 00 .........
11 nacat: DDy aich G0 datz 9x0036 90 00 6 08 PO OO 60 00 88 ... .. ... G
12 1di " o Beoetss data 0xPO3F @0 0@ @@ 09 00 B0 60 00 80 ......... &=
13 1di B,@xFe RO0 0:50 data 0x0043 00 00 ©2 00 90 @0 00 90 @9
14 mul A,B % gﬁg data Ux0051 0@ 80 00 ©1 98 PO 60 99 B
15 movw  A,r@ i b data 0x0854 0@ 00 e ff @8 o1 eo 0o ee
16 wait: RO4 0400 data Gx0B53 00 00 08 00 @9 00 €0 00 @9
® 17 rjmp i Ro5 0,00 data 0x0B6C 00 0O 00 OO 00 60 60 60 80 .........
o+ OeooJ7o A8 A8 88 80 68 B8 B0 68 B0 24

7.3.4 Byte Division
See Algorithms: Byte Division

PAGE 68 AVR OPTIMIZATION: 2022-2023 RSGC ACES



ROYAL ST. GEORGE’S COLLEGE ADVANCED COMPUTER ENGINEERING SCHOOL
DESIGN ENGINEERING STUDIO ICS4U - AVR OPTIMIZATION

7.4 Arithmetic with Multi-Byte Operands

First, there are two dedicated word instructions for addition and subtraction that should be noted.

7.4.0 Two Dedicated Word Instructions: ADIW and SBIW

Two specialized arithmetic instructions are offered, primarily for the purpose of purpose of
manipulating pointers (indices into arrays). Both adiw (add immediate to word) and sbiw
(subtract immediate from word) apply a constant in the interval [0,63] to a register pair, r25:r24,
r27:r26,1r29:r28, or r31:r30.

In the following example, an 8x8 LED matrix image defining the letter ‘A’ is placed into program
flash. The final column in each row of the matrix contains the number of set bits in the row. The
assembly code below runs through the rows tallying the total number of set bits and placed the sum
in r16 (total).

EEEeer—— ]
71 .def total = ri6
8 ijp reset Processor *AX
g .org 0x0628 MName Value
16 A Program Counter  0:0000010B )
Stack Pointer 0:08FF
11 .DB 0,0,0,0,0,0,0,0 i el
12 -bB ,0,0,1,0,0,0,1 Y Register 00080 =
13 .DB &,06,1,1,1,1,6,4 7 Register 00087
14 .DB 2,1,1,8,8,1,1,4 Status Register DIDREEMNEDO
15 DB 1;1,1,1;1;4.1,7 Cycle Counter &6
16 .DB 1,1,0,0,0,1,1,4 Frequency 1.000 MHz
17 .DB 1,1,0,0,0,1,1,4 el el Sl
18 DB 1,1,0,0,0,1,1,4 S
19| matrixEnd: ng gﬁg Memory: | data REGISTERS -1 i
28] .org 9x@10e0 RO2 000 [data 90066 00 G0 B0 00 68 PO 00 B8 VO . ........ &
217 reset: RO3 0:00 |data 9x0005 00 00 00 00 90 00 00 1c 84 .........
22 ldi ZL,low(matrix<<1) RO4 000 ldata 0x0012 0O 00 00 00 00 00 00 00 08 .........
23 ldi ZH,high(matrix<<1) RS 0600, .. 05,0018 00 80 00 87 06 00 00 60 80 .€.......
24 ldi YL, low(matrixEnd<<1) data 0x0024 ©0 @0 @0 00 0O 00 00 80 80 .........
25 adiw Z,7 data 9xB02D 00 60 00 00 00 60 00 00 80 .........
26 clr total data 0xP036 00 00 00 00 00 60 00 00 80 ......... l
277 next: data OxG03F @0 G0 00 90 00 00 00 00 09 ......... T
28 lpm rl7,2Z data ©xP04% 00 60 00 99 00 60 00 00 80 .........
29 add total,r17 data OxBB51 00 60 0 91 00 00 80 08 80 .........
30 adiw Z,8 data 0xBO5A 00 08 00 ff 08 00 00 60 68 .. .y.....
31 cp ZL,YL data Ox0063 @0 GO 00 00 00 00 00 00 90 .........
zi brpl hOl: data 0xBOEC 00 @0 @0 @0 B0 60 00 80 80 .........
rjmp  nex loto oopa7c po oo go oo Ao po oo po oo T
34] hold:
@ 35 rjmp hold

Lines 25 and 30 make use of the adiw instruction to point to the final column of each row.

Debugging Note. While in a debugging session, clicking in the leftmost gray column sets a
breakpoint. Clicking again removes it. With a breakpoint set, you can select Run to Cursor from the
Debug > Window Menu to see the net effect of executing the instructions in between.
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3.4.1 Preparing Multi-Byte Operands

If we wish to perform arithmetic operations on integers greater than 255 special preparation must
be undertaken to separate multi-byte operands into respective byte registers.

3.4.1.0 Applicable Byte Functions

The AVR Assembler recognizes the following set of convenient functions that return bytes
separated from words and double words

e low(expression) returns the low byte of an expression

e high (expression) returns the high byte of an expression

e Dbyte2 (expression) isthe same as high

e Dbyte3(expression) returns the third byte of an expression

e Dbyted (expression) returns the fourth byte of an expression

These functions are to be employed to separate operands into respective registers prior to perform
arithmetic operations.

3.4.2 Adding Two Words

In this example, two 16-bit constants are defined as source operands (Lines 7 and 8), before
separating those into two register pairs, 2 and B (Lines 17-20). The intent is to implement the
assignment statement, B = A+B.

AddTwoWerds.asm

I

2 * AddTwolWords.asm

5| :: Mame Value

4 * (Created: 8/20/2018 3:24:28 PM| Program Counter 0x00000106 =

5 * Author: Chris Darcy Stack Pointer 0BFF [T

6 * f XReg?ster (0000 ‘

7] .set  opA = exeaes ;Ezg:i: gﬁggg =

81 .set opB = @x0@505 StatusRegister  [DTDEEDEDO | |

9 .def AL=r18 Cycle Counter 7 Memory 1 *.B.X

18] .def AH=r19 Frequency 1.000 MHz o

Sl e EEa Stop Watch 700ps | Memory: | data REGISTERS -/

120 .def BH=r21 = Registers data 6x0000 0O 20 00 0O 06 00 00 60 00 ......... -

13] .org 0x0000 ROD 000 data 6x0085 ©O 2O PO 0O 00 0O 00 00 00 .........

14 ST FaSEE ROL 000 data 6x0012 ©4 94 P9 ©9 00 00 0@ 60 €0 .........

15 _org %0100 ROZ 000 data 6xB81E ©© 60 06 00 60 60 06 08 60 .........

16l reset- Egi gﬁg data 6x0024 00 80 00 00 60 00 08 08 80 .. .......

17 Jas AL, low(opA) s e data 8)(@82? 00 0O 00 B0 00 00 BB BO BB ... _.....

18 T3 AH,high(opA) = data Ox0036 OO0 €0 00 00 00 00 PO 08 80 ......... i

19 a5 BL,low(opB) data OxBE3F OO 60 00 09 00 00 P8 98 @0 .........

20 Jdi BH, high(opB) data Gx0042 0O OO 00 0O 06 60 00 60 00 .........

21 o BL,AL data 6x0051 ©O OO PO 01 90 00 00 60 00 .........

22 e BH, AH data Gx@B5A ©O 00 0@ ff O8 60 8O €0 80 ...¥.....

@ 23 hold: i thd| data 6x0863 ©O 20 90 00 00 00 00 00 00 .........

data 6x006C ©O 20 90 00 00 00 00 00 00 .........
Lol 0u007° 00 00 90 90 AP 00 80 80 aa "

The Memory view confirms that after adding the low bytes of the operands with add instruction,
followed by the addition of the high bytes of the operands with the adc instruction, the sum is
correct (0x0909).
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3.4.3 Subtracting Two Double Words

In this somewhat extreme example, the difference between two double-word (4-byte) operands is
determined. Each of the operands opA and opB have their bytes separated into respective
registers prior to implementing the equivalent of the assignment statement, A=A-B.

Sinscingluodounewos:  EEESSSESwTES—SY |

8] .set opA = Bx09898989
gl .set opB = 0xB5050585 Processor v 0 X
10| .def Al=r18 Name Value
11 _def A2=r1G Program Counter  0x0000010C 1
3 Stack Pointer 0:A08FF
o I et a35re X Register 030000
131 .def  Ad=r21 ¥ Register 00000 =
14) .def Bl=r22 Z Register 00000
15 .def B2=r23 Status Register DDEENEDO
16 .def B3=r24 Cycle Counter 13 =
17 sdaf BA=r25 Frequency 1.000 MHz
18 Yerg %0008 Stop Watch 13.00 ps
19 rimp reset g hegeter Memory 1 T
20 .org 8x8108 ROO 0400 | Memory: | data REGISTERS -/ &
21 reset: Eg; gﬁg data Ox0000 0O @0 0P 96 00 00 00 00 66 ......... B
22 1di Al,low(opA) ROZ ;oo |data ©xPE99 @0 ee o @8 0@ 00 60 80 €0 .........
23 1di A2,byte2(opA) RO4 000 |data 6x0012 ©4 84 94 24 95 05 05 @5 00  .........
24 1di A3,byte3(opA) ROS 000 _|data ©xB01E 00 00 09 00 00 @0 00 00 00 .........
25 1di A4, byted(opA) data Gx0PP24 00 00 90 PY 00 B0 80 08 B8 .........
26 1di B1,low(opB) data GxPB2D0 0O 00 80 0@ 00 08 00 00 @0 .........
27 1di B2,byte2(opB) data OxPP36 ©0 90 9P 90 00 90 00 P9 @@ ......... M
28 1di B3,byte3(opB) data Ox0B3F 00 00 20 02 00 00 00 00 @0 ......... @
29 1di B4,byted(opB} data 0xPP43 ©0 @0 9P 90 00 90 00 00 68 .........
30 sub A1,B1 data Ox0851 6@ @0 90 91 06 A0 09 08 68 .........
31 she A2,B2 data Ox005A 0@ @0 9@ ff 08 80 00 00 66 ...¥.....
32 shc A3,B3 data OxPP63 ©0 90 9P 90 00 90 00 P9 @@ .........
33 she Ad,BA data Ox006C 0O @0 9@ 96 00 00 00 00 66 .........
©  34] hold: rjmp _ hold fafo 0c00Jo 00 PO AR AR AR PO AR A0 AR T

Lines 22 through 29 separate the double word. Starting with the lower byte pairs, perform the
first subtraction with the sub instruction. If the result is negative, the Carry flag is set. This
explains why the subsequent subtractions of the remaining byte pairs must be undertaken with
the support of the sbc instruction.
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3.4.4 Multiplying two Words with the MUL Instruction

Multip

MultiplyTweWerds.asm X

Adapted from https://sites.google.com/site/avrasmintr

1 Y e
2 * MultiplyTwolWords.asm
3 * Created: 8/21/2018 11:80:48 AM
4 * Author: Chris Darcy
5 *
6 7
7] .def zero = R2
8) .def AL = Rlse
gf .def AH = R17
18§ .def BL = R18
11§ .def BH = R19
12 .def ANS1 = R20
13] .def ANS2 = R21
14f .def ANS3 = R22
15) .def ANS4 = R23
16§ .set multiplicand = ©x5850
17 .set multiplier = 0x4848
18§ .org 0x0000
19 rimp reset
28] .org ox0100
21} reset:
22 1di AL,low{multiplicand)
23 1di AH,high(multiplicand)
24 1di BL,low(multiplier)
25 1di BH,high(multiplier)
26] mulléx16:
27 clr zero
28 mul AH, BH
29 mov ANSA:ANS3,rl:re

;To hold Zero
;To hold multiplicand

H

;To hold multiplier

H
;LSB of 32-bit produci

H

3
;MSB of 32-bit produci
;AxB=0x5050 * @x4040

5 =Bx1428_1400

Processor
Name

Program Counter
Stack Pointer
X Register
¥ Register

Z Register
Status Register
Cycle Counter
Frequency
Stop Watch

= Registers

ROO
ROL
RD2
RO3
R04
RO5

;Load multiplicand into AH:AL

3

;Load multiplier into BH:BL

H

;5et R2 to zero
3Multiply high bytes AHxBH
;Move two-byte result into answer

Value
0x00000111

0x08FF

00000

0x0000

0x0000
DIDEEVEOE
2

1000 MHz
22.00 ps

Memory 1

Memeory: | data REGISTERS
0x0000 B0 14
0x0009 ©@ e
%0012 4@ 40
8x0018 B8 80
0x0824 ©@ 80
9x002D0 ©@ 00
8x0036 08 80
9x083F ©@ ee
0x00428 0@ 00
9x0051 9@ 99
9x0854 90 88
0x0063 00 @0 @0 PO 99 09 00 80
data 9x00GC @@ 0P 09 93 PA PO 00 A0
R R L R R

000
04
000
000
000
0500

|l ’
80 00 00
00 90 50
14 00 e
00 06 o0
00 00 80
00 00 20
00 00 00
00 00 80
00 00 80
00 00 o0
80 00 60

ee
00
(al2]
00
oo
00
(1]
<]
2]
00
ee

ee
[515]
14
[=2]
=5}
=2
a0
[=l5]
=2}
a1
f

ee
6o
28
[22]
80
20
20
0o
2o
20
28

data
data
data
data
data
data

data
data
data
data
data
data
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8 AALP: AVR Assembly Language Programming within the Arduino IDE

8.0 Inline Assembly

Within the Arduino IDE, there are a number of ways to embed assembly code within your Arduino C
code. The AVR Inline Assembly Cookbook, dating from 2002, describes a highly cryptic technique
that is far too cumbersome for my taste, but you may find it more to your liking:

http://www.nongnu.org/avr-libc/user-manual/inline asm.html

Hats off to this guy who presents a tutorial making it more palatable:

The use of Special Function Register (SFR) macros allows one to access the registers by name
rather than their memory-mapped addresses.

8.0.0 Blink
The technique below is perhaps the simplest.
1/// Purpose : Demonstrates the use of inline assembly to Blink pin 13
2// Buthor : C. D'Arcy
3// Date 2017 10 A3
4// Btatus : Working
5|woid setup(} {
B asm(
7 "ldi rlé, 0b00100000 \n" //prepare pin 13 (PBS5)} for output
8 "sts 0x24,rlé b5 4 fide it
9 "ldi rlé, 0b00100000 \n" //constant for setting pin 13 high
10 "sts 0x25,rlé6 \n" fide it
11 }i
12|}
13 |wvoid leoop({} {
14 delay(1000) ; //pause
15 asm
16 "com rlé \n" //invert previocus wvalue of rle
17 "sts O0x25,rlé6 A\n" //toggle PORTE

};
H

;
o m
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8.0.1 Blink Without Delay

This tutorial documents one user’s attempts to pursue inline assembly within the Arduino IDE:
http://rwf.co/dokuwiki/doku.php?id=smallcpus

The two files below are used in conjunction with the driver from Section 2.1.1

&% BlinkWithoutDelay - asmtest.h | Arduina 1.8.2 =REC X

File Edit Sketch Tools Help

asmtesth

e L b

#ifdef __ ASSEMBLER__

I ]

8 #else

12 [#include <stdint.h>

14 lextern "C" uintd t led{uint8_ t});

15 |extern "C" uint8 t asminit{uint8 t);

17 |#endif

o an COMM34

PAGE 74 AVR OPTIMIZATION: 2022-2023 RSGC ACES



ROYAL ST. GEORGE’S COLLEGE
DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL
ICS4U - AVR OPTIMIZATION

BlinkWithoutDelay - asmtest.% | Arduino 1.8.2

File Edit Sketch Tools Help

asmtestS§

// Reference: http: rwi.co

dokuwiki /doku.php?id=smallcpus

#include "avr/ioc.h"™

#include "asmtest.h™

.global asminit
asminit:

- o 0B W N

ret

; Define the function led()
.global led

11 1ed:

Lo BN & R 5

12 cpi r24, 0x01

15 breq turnoff

14 sbi SFR_IO ADDR (PORTB),
1.5 ret

16 |turnocff:

17 «cbi SFR IO ADDR(FORTB),
18 ret

Sketch
Global

; Define the function asminit ()

sbi _SFR_IO ADDR(DDRB), PORTRES

PORTES

PORTBS

;Bit 5 = pin 13

;function must be declared as global

;parameter passed by caller in r24

;Bit 5 pin 13

sBig 5 pin 13

Space.

memory,

uing Uno on COM44
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8.1 Pure Assembly

[ found it too great a challenge develop pure assembly code within the Arduino IDE that mimicked
the way I did it years ago within AVR Studio on PCs. PlatformlIO appers to offer something very
close on Macs so I'd like to give it a shot this year.

8.1.0 Blink

The pure assembly Blink sketch is provided as an example within the PlatformIO Project Samples.

Fle Edt View Selecton Find Packages Melp PlatiormiO

Project 3 Plat ¢ i monS

(4 AtomA equ RAMEND, x8ff W
> B AtomArdune B > i

\ equ SREG, @x3f
> I Samph =

‘ » B SampleOne .eq , ex3d

| > i Biok .equ SPH, Ox3e

‘ .equ PORTE, oxés

@ > I IterruptGame

.equ DDRE, @xo4

> I arduino-blink-11747-6324-19j0rkt jqar2akyb? .2qu PINE, @x@3

v [ atmelavr-assember-blink-11747-6324-cugv35.633mvaen

org @
> B
5_3 L risp main
v . e
£ mans sain

© gugnore

B - Lravis.ym
@ e _scriptpy 161 lo8(RuE
- out SPL,ri6

& platoemion : s
di r16, his{RAMEND

README st <D -
e out SPM,r16

> I Platformi0
> I PatformTest

v [ FirstStep

C manc ¢cle r17
<O D manhex nainloop
B manoxt
& B, MakeSie
> I Second
> [ Octoberl
a wWal
e
PlatformliO: Build  Fute t v No lssue 4+ X swdmainS 11 IF UTF-8 PainTet [Dofles MEupdates ©
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Appendices

A Development Environments

A Development Environment (DE) consists of a suite of software applications that can run the
entire range from converting a programmer’s ideas to uploading and running the machine-
executable version of those ideas to the target hardware platform or simulator. Tools could include
a UML utility, compiler, linker, debugger, uploader, simulator, etc.

A.O Integrated

An Integrated Development Environment (IDE) provides immediate access to the majority of
development tools through and interactive interface.

A.0.0 Arduino IDE

https://www.arduino.cc/en/Main/Software

BlinkWithoutDelay | Arduino 1.6.9 _

File Edit Sketch Tools Help

BlinkWithoutDelay | asmtests Hu:mi;r_im. |

1 #include "asmtest.h"

%

m

w

int x = 0;
1At en = 1;

=

6 void setup()
7|{
: asminit (0);

ﬁSketch uses 580 bytes (1%) of program storage space.
Global variables use 13 bytes (0%) of dynamic memory,

|
»

Arduino/Genuino Uno on COM47

|
)

Due to its familiarity, our first few attempts at AVR Assembly language programming will be
undertaken within this environment.
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= loop.if
IT (HIGH == HAIGH)
while(Serial.available()>@)

:_i Solution 'Exarmplel’ (1 project)

£ F] | Examplel
; serdal:coad()s =d| Dependencies
it -
- = Qutput Files
if (iCounter:leeesa) 53l Libraries
{ 3 Visual Micre
showTextMessage(); ¢ Examplel.ino
@ &1 Bremplelbiine
¥ i & Examplelc.cpp

"

=

100% = 4| Examplelc.h

Exarnplel | Expressions on COME 3¢
Senal COME

Name Data

I Example Tino, fine 14 charscosr
% o po = Arduing shared usb debug demo
(10000+Courter=1) 9758 6le 2 9738 Arduine shared ush debug demo
i 60250 eb5a 250 60250 Arduine shared usb debug demo | |
mills{) 23424 -

[¥] Connect [T] Dtr [&] Clear jHSZDD =

SEEEEE

YeTTTaawT T e L LS R e e
Examplel.ino, line 14 character 1 (1B@e8-iCounter+l)= 7 i= pease 1
count down 7. The value of i in my example is 688088 and millis() is 22768
Examplelb.ino, line 1 character 1

Show output from: | Micro Debug Trace

s aLge
2@3:55:44.415
Next message
@@:55:44.431

-

T
'ﬂ- Error List B¥ Find Results 1 QEKelian

A.0.2 Crosspack (Mac)

https://www.obdev.at/products/crosspack/index.html

A.0.3 Atom and PlatformlO (Cross-Platform)

l " Exarnpf;‘l - AtmelStudio ’El
File Edit View VAssistX ASF Project Build Debug Tosls Window Help
falr @ - S o 6 a9 - - S -E | BB [Debug - [ sam I EF R
E [ e e T e S (T B el = B s B s = B L o e e
: | Arduino Uno - R _i|coms =
Examplel.ino X Examplelb.ino Examplelc.cpp Properties v L

Examplel Project Properties
BEb |l

False

Disassembly Switches

Disassembled View

Memory Usage Repor False

(Enable Debugging) &Nl

Enable Break/Pause  False
Hit Counters Milliseconds
Inc. Disabled Breakpoi False

4

Jump To Source False
Local Port

Local Speed

Remaote Pin RX

Remote Pin TX

Remote Port

Remote Speed

Remote Transport

1]

True

Startup Delay (ms)
Startup Delay or Dtr
Startup Message
Startup Wait
_Throttle (ms)

False
]

--E I I D 1 s )
Switch on debugging for the current

project cenfiguration, This is a duplicate ..,

Ethan Peterson (ACES ’'18) brought this IDE to my attention and, to my mind, since it’s the closest
match to AVR Studio for the Mac, we’ll use it for most of our investigations.

A.0.4 WinAVR (Windows)

http://winavr.sourceforge.net/

A.0.5 AVR-Eclipse
http:

avr-eclipse.sourceforge.net/wiki/index.php/The AVR GCC Toolchain

| »

m
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A.1 Standalone

Default ASCII text editors (Mac:TextEdit-Plain Text; Windows:Notepad) can be used to edit your
code code.

A.1.0 TextMate (Mac)
The’ missing’ Mac Editor: https: //macromates.com/

A.1.1 Notepad++(Windows)

Useful programming enhancements to Notepad can be found in Notepad++ at
https://notepad-plus-plus.or

A.1.2 Programmers Notepad (Windows)
http://www.pnotepad.org/
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B Software: GNU Toolchain

Our study of AVR Assembly Language will make use of the Free Software Foundation’s open source
GNU Compiler Collection (GCC). Within this broad project, tools are provided for a number of target
platforms. Consult the link below for an overview of the toolchain available for the AVR family of
microcontrollers:

http://www.nongnu.org/avr-libc/user-manual/overview.html

B.0 GCC

“GCC focuses on translating a high-level language to the target assembly only. AVR GCC has three
available compilers for the AVR: C language, C++, and Ada. The compiler itself does not assemble or
link the final code.

GCC is also known as a "driver” program, in that it knows about, and drives other programs
seamlessly to create the final output. The assembler, and the linker are part of another open
source project called GNU Binutils. GCC knows how to drive the GNU assembler (gas) to
assemble the output of the compiler. GCC knows how to drive the GNU linker (Id) to link all of
the object modules into a final executable.

The two projects, GCC and Binutils, are very much interrelated and many of the same
volunteers work on both open source projects.

When GCC is built for the AVR target, the actual program names are prefixed with "avr-". So
the actual executable name for AVR GCC is: avr-gcc. The name "avr-gcc” is used in
documentation and discussion when referring to the program itself and not just the whole
AVR GCC system.

See the GCC Web Site and GCC User Manual for more information about GCC.”

B.1 GNU Binutils

“The name GNU Binutils stands for "Binary Utilities". It contains the GNU assembler (gas), and the
GNU linker (1d), but also contains many other utilities that work with binary files that are created as
part of the software development toolchain.

Again, when these tools are built for the AVR target, the actual program names are prefixed
with "avr-". For example, the assembler program name, for a native assembler is "as" (even
though in documentation the GNU assembler is commonly referred to as "gas"). But when

mnn

built for an AVR target, it becomes "avr-as”.
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B.1.0 avr-as

The assembler. The online reference can be found here:

https://sourceware.org/binutils/docs-2.19/as/

B.1.1 avr-Id
The linker.

B.2 avr-libc

“GCC and Binutils provides a lot of the tools to develop software, but there is one critical component
that they do not provide: a Standard C Library.

There are different open source projects that provide a Standard C Library depending upon
your system time, whether for a native compiler (GNU Libc), for some other embedded system
(newlib), or for some versions of Linux (uCLibc). The open source AVR toolchain has its own
Standard C Library project: avr-libc.

AVR-Libc provides many of the same functions found in a regular Standard C Library and
many additional library functions that is specific to an AVR. Some of the Standard C Library
functions that are commonly used on a PC environment have limitations or additional issues
that a user needs to be aware of when used on an embedded system.

AVR-Libc also contains the most documentation about the whole AVR toolchain.”

B.3 Building Software

“Even though GCC, Binutils, and avr-libc are the core projects that are used to build software for the
AVR, there is another piece of software that ties it all together: Make. GNU Make is a program that
makes things, and mainly software. Make interprets and executes a Makefile that is written for a
project. A Makefile contains dependency rules, showing which output files are dependent upon which
input files, and instructions on how to build output files from input files.

Some distributions of the toolchains, and other AVR tools such as MFile, contain a Makefile
template written for the AVR toolchain and AVR applications that you can copy and modify
for your application.

See the GNU Make User Manual for more information.”

B.4 AVRDUDE

“After creating your software, you'll want to program your device. You can do this by using
the program AVRDUDE which can interface with various hardware devices to program your
processor. AVRDUDE is a very flexible package. All the information about AVR processors and
various hardware programmers is stored in a text database. This database can be modified by
any user to add new hardware or to add an AVR processor if it is not already listed
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C AVR Assembly Reference
The 8-bit AVR Instruction Set (AVRIS) is detailed in the following pdf:

http://mail.rsgc.on.ca/~cdarcy/Datasheets/doc0856.pdf

C.0 Status Register (Flags), Register and Instruction Operands
(Included) Can be found on pp.1-2 of the AVRIS.

C.1 Program and Addressing Modes
(Included) Can be found on pp.3-10 of the AVRIS.

C.2 Register (GP, 1/0O & Extended I/0) Summary

(Included) Can be found on pp.9-12 of
http://mail.rsgc.on.ca/~cdarcy/Datasheets/ATmega328PSummary.pdf

C.3 Frequently Used AVR-as Directives

Directives, like many other features, are assembler-dependent (AVRASM vs AVR-as). Since we're
using AVR-as the applicable assembler directives can be found here:
https://sourceware.org/binutils/docs-2.19 /as /Pseudo-Ops.html#Pseudo-Ops

C.4 Interrupt Vector Table

12.4 Interrupt Vectors in ATmega328 and ATmega328P

Table 12-6.  Reset and Interrupt Vectors in ATmega328 and ATmega328P

Program
VectorNo. Address Source Interrupt Definition
1 0x0000'"! RESET External Pin, Power-on Reset, Brown-out Resat and Watchdog System Reset
2 0x0002 INTD External Interrupt Request 0
3 0x0004 INTH External Interrupt Request 1
4 0x0006 PCINTO Pin Change Interrupt Request 0
5 Oxpoo8 PCINT1 Pin Change Interrupt Request 1
6 Ox00DA PCINTZ Pin Change Interrupt Request 2
7 0x000C woT Watchdag Time-out Interrupt
8 Ox000E TIMER2 COMPA Timer/Counter2 Compare Match A
9 0x0010 TIMERZ2 COMPB Timer/Counter2 Compare Match B
10 0x0012 TIMERZ OVF Timer/Counter2 Overflow
n 0x0014 TIMER1 CAPT Timer/Counter1 Capture Event
12 0x0016 TIMER1 COMPA Timer/Counter1 Compare Match A
13 oxo018 TIMER1 COMPE Timer/Coutner! Compare Match B
14 Ox001A TIMER1 OVF Timer/Counter1 Overflow
15 0x001C TIMERD COMPA Timer/Counterl Compare Match A
16 Ox001E TIMERO COMPE Timer/Counter Compare Match B
17 0x0020 TIMERD OVF Timer/Counter0 Qverflow
18 0x0022 SPI, STC SPI Serial Transfer Complete
19 0x0024 USART, RX USART Rx Complete
20 0x0026 USART, UDRE USART, Data Register Empty
21 0x0028 USART, TX USART, Tx Complete
22 Ox002A ADC ADC Conversion Complete
23 0x002C EE READY EEPROM Ready
24 Ox002E ANALOG COMP Analog Comparator
25 0x0030 ™WI 2.wire Senal Interface
26 0x0032 SPM READY Store Program Memory Ready

Motes: 1. When the BOOTRST Fusa is programmed, tha device will jump t the Boot Loader address at reset, sea ‘Bool Loader Support — Read-Whits-Wiits Salf
Programming” on poge 263
2. When the IVSEL bit in MCUGR is set, interrupt Vectors will be moved ta the start of the Bool Flash Section. The address of sach Interrupt Vector will then

be the address in this lable added fo the starl address of the Bool Flash Section
Table 12-7 on page 66 shows reset and Interrupt Vectors placement for the various combinations of BOOTRST

and IVSEL settings. If the program never enables an Interrupt source, the Interrupt Vectors are not used, and
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C.5 Instruction Set

Be the first to clip this slide

Atmega328P Instruction Types

Instruction Type No. of Instructions

Arithmetic 17

Shift and Rotate 5
Bit-wise Operations 12
Compare Operations 4
Branching 27
Subroutine Calls 6

I/O Instructions 6
Moving Data 29
SREG Bit Operations 18
Program Memory Instructions 11
MCU Control Instructions 6
Total 141

R S Ananda Murthy Assembler Pogramming of Atmega328P
[ [

C.5.0 Summary of Instructions
(Included) Can be found on pp.13-15 of:

http://mail.rsgc.on.ca/~cdarcy/Datasheets /ATmega328PSummary.pdf

C.5.1 Detailed Instruction Set
See pages 11-157 of http://mail.rsgc.on.ca/~cdarcy/Datasheets/doc0856.pdf
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