
R O Y A L S T . G E O R G E ’ S C O L L E G E

A D V A N C E D C O M P U T E R E N G I N E E R I N G S C H O O L

C H E A P H O M E M A D E U N D E R S T A N D A B L E M I N I M A L P R O C E S S O R

ICS4U-E students have earned the technical and scholastic skill set to permit them to

engage the quintessential computer engineering project: the 4-bit TTL Processor.

The purpose of this workbook is to support students’ hands-on creation of a processor that

will execute machine language instructions on device based on Harvard architecture.

 ACE: ___

 Course: ICS4U-E

 Year: 2025-2026

 Instructor: C. D’Arcy

 Based on: A Simple and Affordable TTL Processor for the Classroom

 D. Feinberg. 2007.

 Photo: D. Raymond & J. Corley’s CHUMP. Spring 2019.

 Video: https://www.youtube.com/watch?v=vZ13xud0qBc

Quote: People who are serious about software should make their

own hardware. Alan Kay, July 1982.

https://www.youtube.com/watch?v=vZ13xud0qBc

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

ii

Why are Sr. ACES Asked to Undertake this Project?
The answer to this question is rooted in your teacher’s philosophy of scholastic enrichment. RSGC’s

ACES program is optional, so you have engaged its curriculum by choice. It is not every secondary

school student that willingly embraces time-consuming, demanding curriculum that is not required by any

university admissions department. At this most critical stage of your young scholastic journey you have

taken a leap of faith based on the expectation that you will be advantaged in the future for doing so. For

the engineering-bound among you, this is a wise decision.

Chump Build. Photo courtesy of J. Vretenar ACES, Fall 2020

To truly understand and appreciate computer technology, or any sufficient complex system for that

matter, takes time. You may not appreciate that you have more time on your hands now than you will as

you get older. So, it is both a great privilege and a responsibility to determine how best to invest my

students’ time for maximum future advantage.

Through feedback from ACES alumni, I have a good sense of what lies in wait for you in an

undergraduate engineering program. Although I receive no shortage of suggestions from them on what

specific facts and techniques the universities had taught them, our program is less about saving you from

having to go to class, and more about giving you the perspective you need to engage new material you are

expected to master. For example, when your project group is meeting to discuss the sequence of steps

required to get a prototype across a finish line in four weeks, your experience and skills will temper their

fantasies about a hassle-free implementation and suggest a more realistic course of action.

ACES is an acronym for Advanced Computer Engineering School in which we engage projects within its

realm. Building a processor from TTL chips is the quintessential ‘rite-of-passage’ in preparation for post-

secondary courses in computer architecture.

Apart from the deep knowledge and insights you will gain, the time-consuming, challenging, and

frustrating days and weeks of building, wiring, rewiring, and debugging are all conditioning you for what

lies ahead. Few projects you have undertaken compare to the complexities of building a working CHUMP

and conditioning yourself to its uphill trajectory and supportive time-management and resilience skills

will test the depth of commitment to an undergraduate engineering program.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

iii

Table of Contents

WHY ARE SR. ACES ASKED TO UNDERTAKE THIS PROJECT? .. II

FEEDBACK FROM ACES’ ALUMNI ... VI

0 ACKNOWLEDGEMENTS ... 1

DAVE FEINBERG, B. SC., M. ENG. ... 1

ACES’ CHUMP LEGACIES AND ARCHIVES .. 2

2015/2016 Jackson Russett ... 2

2017/2018 Ethan McAuliffe .. 2

2018/2019 Dan Raymond and James Corley .. 2

2019/2020 Josh Dolgin and Max McCutcheon ... 3

2020/2021 Joseph Vretenar .. 4

2020/2021 Liam Roberston-Caryl ... 5

2020/2021 Jackson Shibley ... 5

2023/2024 Graham Davidge ... 6

2023/2024 Liam McCartney ... 6

2024/2025 Rohan Jamal ... 7

BEN EATER ... 8

Eater Video Gallery ... 8

1 SOFTWARE .. 9

1.1 INSTRUCTION SET ... 9

1.2 PROGRAM STRUCTURE AND STORAGE .. 9

1.3 INSTRUCTION EXAMPLES .. 10

1.3.1 ADD Instruction .. 10

1.3.2 IFZERO Instruction .. 10

1.3.3 GOTO Instruction ... 10

1.3.4 LOAD Instruction .. 10

1.4 PROGRAM GUIDELINES .. 11

1.5 COMMON PROGRAM STRUCTURES .. 12

1.5.1 Swapping Variables .. 12

1.5.2 if/else Statement ... 12

1.5.3 while Loop ... 13

1.5.4 Array Update .. 13

1.6 SAMPLE PROGRAMS .. 14

1.6.1 Feinberg’s Classic (Beginner) .. 14

1.6.2 Shift Left (Intermediate) ... 15

1.6.3 Fill (Advanced) .. 15

1.6.4 DER TASK: Your First Chumpanese Program .. 15

2 HARDWARE OVERVIEW .. 16

2.1 THE 4-BIT TTL PROCESSOR PLATFORM ... 16

2.2 POWER ... 17

2.2.1 5V DC Voltage Source ... 17

2.2.2 DC Voltage Barrel Jack Breakout Board ... 17

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

iv

2.2.3 Bypass (Smoothing) Capacitors .. 18

2.2.4 Voltage Regulation... 18

2.3 WIRE CONSIDERATIONS ... 19

2.4 LEDS FOR INDICATION ... 20

2.5 FAMILIES OF INTEGRATED CIRCUITS .. 20

2.6 SUMMARY OF CHUMP INTEGRATED CIRCUITS... 21

3 HARDWARE BUILDS .. 22

3.1 555 TIMER/CLOCK ... 22

3.1.1 The Clock Build ... 23

3.1.2 DER TASK: Clock Build .. 23

3.2 74LS161 SYNCHRONOUS PROGRAM COUNTER ... 24

3.2.1 Program Counter Insights .. 24

3.2.2 Clock-Influenced IC Block Diagram ... 24

3.2.3 DER TASK: Program Counter .. 25
3.2.3.1 Placement of the Program Counter .. 25

3.3 AT28C16 PARALLEL EEPROM .. 26

3.3.1 TL866 II EEPROM Programmer .. 26

3.3.2 Breadboard EEPROM Programmer .. 27

3.3.3 RSGC ACES AT28C16 EEPROM Programmer Shield .. 27

3.3.3 DER TASK: Program EEPROM ... 28
3.3.3.1 AT28C16 16K (2K×8) Parallel EEPROM Pin Connections ... 28

3.3.4 Program EEPROM Pagination .. 29

3.4 74LS181 ARITHMETIC LOGIC UNIT (ALU) .. 30

3.4.1 The 74LS181 ALU .. 30
3.4.1.1 74LS181 ALU Function Table .. 31

3.4.2 DER TASK: The ALU ... 32

3.5 74LS157 MULTIPLEXER (SELECTOR) .. 33

3.6 MEMORY .. 33

3.6.1 Latch ... 33

3.6.2 D-Type Flip-Flop ... 33

3.6.3 74LS377 Accumulator (Octal Quad D-Type Flip-Flops) ... 34

3.6.4 74LS174 Address (Hex D-Type Flip-Flop) .. 35

3.6.5 74LS189/289 RAM (64-bit Random Access Memory) .. 36

4 CHUMP GLUE: THE BUSES ... 37

4.1 THE ADDRESS BUS .. 37

4.2 THE DATA BUS ... 38

4.3 THE CONTROL BUS ... 39

4.3.1 Control Code Sample .. 41

PROGRAMMING YOUR CHUMP ... 42

5 REFERENCE: CHUMP CHIPS ... 43

74LS157: Quad 2-Line to 1-Line Data Selectors/Multiplexers .. 43

74LS174: Hex D-Type Flip-Flops with Clear .. 44

74LS181: 4-Bit Arithmetic Logic Unit .. 45

74S189: 64-Bit Random Access Memory .. 47

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

v

74LS377: 8-Bit Register ... 48

AT28C16: 16K (2K x 8) Parallel EEPROM .. 49

Chip Diagrams ... 50

EPILOG. NOTES FROM D. FEINBERG ... 52

LAB RULES .. 52

FINAL FEINBERG THOUGHTS ... 53

APPENDIX A. AVR OPTIMIZATION TOOLKIT ... 55

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

vi

Feedback from ACES’ Alumni
“The freedom to design, build, make mistakes and troubleshoot that your courses allow is incredibly

important as when you get to university your freedom to do those things are severely limited in place of

more standard textbook & PowerPoint based courses. The ISPs that I worked on at RSGC (Line & Wall

Avoiding Robots) were a big factor in my decision to specialize into the mechatronics following the

general engineering first year. Without that experience, picking a stream of engineering would have been

much foggier.” R. Fletcher, Mechatronics Engineer, ACES’15, Western ‘20

 “I've found a new appreciation for my three years in the ACES program. I've talked with my

housemates who came from different schools across Toronto and they've admitted, after looking ahead at

the course's later content, they are a little bit worried. This is where my new found appreciation comes in.

The vast majority of the courses’ content has been covered in either the Grade 11 or Grade 12 ACES

classes and because of that, I've been given a very sizable advantage before the course has really even

started. In addition to the design, software, and hardware knowledge I gained from the program, the

ability to write well thought out, concise, neatly formatted, and very visually appealing reports in a short

amount of time has been paramount.” J. Lank, Engineering, ACES’20, Queen’s ‘24

“My ACES knowledge continues to make my life

relatively easy at school. I finished up the

second Digital Circuits course with a strong mark. I

am taking Computer Organization this semester

which is about half MIPS 32 based Assembly

programming, and the other half basic computer

structure (lots of similarities to CHUMP here). It's

great to see some of this stuff again - while a bit

repetitive at times it's nice to have at least one course

where you can count on your own brain for the content.”

 G. Benson, Commerce and Engineering, ACES ’19, U of Calgary ‘23

“I thought this would be a good time to say how grateful I am for everything I learned in your class. It

continues to pay dividends in everything I work on both inside and outside of school.”

 E. Peterson, ECE (Direct Entry), ACES ’18, Queen’s ‘22

“As I continue with my job search for winter term, one of the jobs I came across was as an assistant in the

MME/WatIMake clinic, this job would entail consulting and aiding students/faculty with rapid

prototyping, machining, and embedded software development, basically TA 2.0. I was the only 1st year to

be selected for an interview, amongst 2nd, 3rd, and even 4th years. While I did not get the job, the

interviewer did go out of their way to tell me that I had a huge capacity for all aspects of engineering,

much more than was expected of a 1st year.”

 J. Dolgin, Engineering, ACES ’20, Waterloo ‘25

“Yesterday I had an interview with AMD for an internship position. In the interview they asked me

extensively about the projects I worked on in the ACES program. Today, I was offered the job there. I

have no doubt that your course was the primary reason I was offered the job, and I am reminded of how

important it is to my life. I want to thank you for the time you invested in me as a student.”

 O. Logush, Electrical Engineering, ACES ’18, Queen’s ‘23

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

1

0 Acknowledgements

Dave Feinberg, B. Sc., M. Eng.
This MIT graduate found himself teaching Computer Science at the

Harker School in California in 2007. To round out his students’

Grade 11 AP CS experience he elected to introduce them to hardware

in Grade 12 by asking them to build a breadboard processor. His pdf

guide entitled A Simple and Affordable TTL Processor for the

Classroom found its way onto the internet and eventually into our

hands in 2011. Feinberg’s design of a 4-bit, TTL level processor is

modelled after a similar computational platform based on a Harvard

architecture of a device he explored while at MIT. As far as I can tell,

Feinberg left the Harker School around 2010 and moved to Ohio

where he now teaches at the Columbus Academy, a private country

day school. https://tinyurl.com/smpmd9be

What started out as a curiosity for some of the ambitious ACES in any grade in the ensuing decade has

evolved into cornerstone of our Grade 12 course. Few activities can match the numerous benefits the

complete build provides, not the least of which to is set the stage for the Assembly language exploration

of AVR 8-bit microcontrollers in the latter half of the senior course.

Indeed, ACES have gained so much advantage from Feinberg’s

masterpiece I felt the need to reach out, thank him personally, and

share some of the heights ACES have taken his CHUMP project to. In

a recent email exchange, Feinberg shared this response,

“This past semester I taught my course over Zoom, and so I couldn't

have the kids work with actual hardware. Instead, I used CircuitVerse-

-a free digital electronics simulation website. It's sometimes glitchy,

but mostly I was very impressed by what it could do (and how easy it

was to use). After the students completed labs on combinational logic

and finite state machines, I had them work through this tutorial on the

Chumpanese language.”

https://tinyurl.com/5yrv3e5z

 “They entered their programs into this simple virtual machine:”

https://tinyurl.com/t9jayhw7 (may have to type in)

 “Then students learned about the CHUMP processor by completing this lab, which walked them through

all the parts of the CHUMP and had them fill in ROM values to make it work.”

https://tinyurl.com/7a7rrjv6

Finally, I could be mistaken, but I believe that after a decade, and reviewing what ACES have done with

his outline, Feinberg was inspired to take a fresh look at his former brilliance. The virtual simulations are

the result and, as far as I know, he has resumed presentation of this curriculum to his computer science

classes at Columbus Academy.

https://tinyurl.com/smpmd9be
https://tinyurl.com/5yrv3e5z
https://tinyurl.com/t9jayhw7
https://tinyurl.com/7a7rrjv6

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

2

ACES’ Chump Legacies and Archives

2015/2016 Jackson Russett

While he was a Grade 10 student, Jackson approached me

with a copy of Feinberg’s paper and asked if I’d help him go

through it, with a view to building the full processor. Our half-

course ended before Jackson could finish the full build but not

before he successfully developed an Arduino Shield that he

used to flash the AT28C17 EEPROM (right).

2017/2018 Ethan McAuliffe

The 2017/2018 ICS4U class was the first group tasked with

developing the CHUMP. Although no one completed the

build in full, Ethan took on the challenge of building an 8-bit

processor based on Ben Eater’s design for his Long ISP. This

proved too great a challenge to complete in the 8 weeks that

were budgeted. Not to be defeated, Ethan returned to the 4-bit

design over the summer of 2018 and was triumphant. Read all

about it at: https://tinyurl.com/nj8bpx8t

2018/2019 Dan Raymond and James Corley

In the 2018/2019 ICS4U class was given their crack at the CHUMP. Dan and James engineered a

successful build in the Fall. Having enjoyed the experience, they requested the build for their Long ISP in

which they would produce a custom PCB and EEPROM burner plugin. They did exactly that as this video

describes: https://tinyurl.com/rwm4bvsu

Raymond CHUMP without Corley Programmer

Raymond CHUMP with Corley Programmer

https://tinyurl.com/nj8bpx8t
https://tinyurl.com/rwm4bvsu

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

3

2019/2020 Josh Dolgin and Max McCutcheon

By the third year, Sr. ACES had had both the benefit of the two previous’ years progress and the

confidence that the summit of the project was attainable. Despite weeks of arduous research, wiring,

flashing of EEPROMs and debugging, many of our intrepid Sr. ACES eventually completed their

marathons. Two leaders within the group, Josh Dolgin and Max McCutcheon, shared their daily progress

with their peers along the way and deserve special mention. Max’s build and DER notes appears below.

Here is Josh’s CHUMP video summary: https://tinyurl.com/b2kbpfu4

https://tinyurl.com/b2kbpfu4

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

4

2020/2021 Joseph Vretenar

On the strength of the three previous build years, the 2020/2021 Sr. ACES were well positioned to tackle

their projects. An unanticipated advantage turned this year into a wildly successful iteration as the mutual

support these ACES offered each other was a joy to behold. For his Short ISP Joseph was excited to put

his newly-acquired CNC machine to use by milling out a custom-designed wooden CHUMP case with an

acrylic top. https://tinyurl.com/yrr2saxe

https://tinyurl.com/yrr2saxe

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

5

2020/2021 Liam Roberston-Caryl

The computational performance of the CHUMP falls

on the shoulders of the SN74LS181 Arithmetic and

Logic Unit from Texas Instruments. A good portion of

the workbook text to follow covers the features (and

mysteries) of this historically significant IC.

Intrigued by the importance and idiosyncrasies of this

chip, Liam Robertson-Caryll elected to commit his

Short ISP selection to the design and implementation

of a UNO Shield that could be exploited to demystify

the device.

Two trips to JLCPBCs in the Fall of 2020 produced a

remarkably proficient solution that Liam demonstrates

admirable in his summary video,

https://tinyurl.com/468su2b

In his Reflection, Liam includes the following perspective, “…I am glad that I chose the ALU Shield for

my ISP because it both prepared me for the CHUMP and reinvigorated my passion for hardware design.

In all, I got to feel what it is like to engineer something from an old datasheet to a modern PCB.”

2020/2021 Jackson Shibley

Jackson was drawn to the SN74LS181 Arithmetic and

Logic Unit like a magnet. His long-standing passion

for 20th Century legacy hardware provided all the

incentive he needed to pull back the curtains on this

complex device to expose the combinational logic

design that drove its 1970s success.

Jackson’s ALU emulator, which he dubbed the

ShiB181, consisted of two boards. The motherboard

implementation of the adjacent schematic included

two dozen discrete logic ICs and headers for

connectivity. A daughterboard attached to the

motherboard provides visual confirmation of the operands, function selection, and control lines. Here is

Jackson’s summary video, https://tinyurl.com/3rz5weuz

In his Reflection, Jackson relates the following perspective, “When I started to investigate the SN74LS181

in July 2020, I was immediately intrigued by the efficiency of its logic design. As I continued to study the

chip, I began to learn more than I ever could have imagined. I learned about complex Boolean arithmetic,

propagation delay, ripple counting, and much more. By the end of the summer, I decided that I had

learned enough and I should put all of my newfound knowledge into practice.”

https://tinyurl.com/468su2b
https://tinyurl.com/3rz5weuz

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

6

2023/2024 Graham Davidge

“This project was potentially the coolest and most interesting thing I have ever done. From reading about

CHUMP at the beginning of the term, to watching my completed CHUMP work, I was engaged by this

project.” https://www.youtube.com/watch?v=yLP8whVingA

2023/2024 Liam McCartney

“This project was a ton of fun to build. The room for customization within CHUMP is enormous, and

gives room to branch out into anything you would like. No two CHUMPs will end up looking alike. The

other thing I liked about CHUMP is how the group comes together to get it done. We all had our own

chip assignments, and we taught and learned with each other.”

https://www.youtube.com/watch?v=DcIRDraD-Dk

https://www.youtube.com/watch?v=yLP8whVingA
https://www.youtube.com/watch?v=DcIRDraD-Dk

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

7

2024/2025 Rohan Jamal

“This has been a phenomenal project. I can honestly say that I genuinely understand the entire CHUMP,

and I fulfilled all of my wishes from the start of the project. Over the last month, many days were spent in

the DES until 6 or 7 P.M. I was fascinated from the start with increasing the clock frequency from 1 Hz to

a much higher frequency. I managed to get the frequency to 90.23 KHz, and in a way that my program

did genuinely benefit from the additional processing power.

This project also answered one of my biggest questions about microcontrollers and computers (Arduinos

in particular): last year, I remember asking Mr. D’Arcy how the Arduino IDE transfers the code you

write onto the chip itself and how the processor is able to interpret the code. Now that I have written my

own assembly code, converted it to machine language, and built the processor for it to run on, I think that

I do understand how it works.

https://www.youtube.com/watch?v=xfGtRVXh8Xc

https://www.youtube.com/watch?v=xfGtRVXh8Xc

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

8

Ben Eater
ACES are already familiar with Ben Eater’s remarkably informative

and insightful YouTube videos on electronics. Here is the link to his

Channel:

https://tinyurl.com/jnq3hrg

Over the past couple of years Eater has followed a path in parallel

with ACES in which he outlines, in wonderful detail, the development

of an 8-bit 6502-based computer on a breadboard. Furthermore, all the

parts can be purchased in kit form from his web shop at,

https://eater.net/shop

Ironically, it is his own sentiments expressed in the first 30 seconds of his must-see Why Breadboards?

video [https://tinyurl.com/vzzfu95] that steers ACES away from Eater’s design and towards CHUMP.

Apart from the fact that the time-savings of a 4-bit design in the short timeframe our course imposes is

significant, his explanations are so good that it turns his 6502 design into a paint-by-numbers project that

leaves little room for ACES to pursue the real benefit of an exercise like this: troubleshooting. With little

more than the description this workbook provides, to a large extent you are, purposely, on your own.

Eater Video Gallery

There are a number of videos that Eater offers that are useful for our CHUMP processor.

Why Breadboards? https://www.youtube.com/watch?v=fCbAafKLqC8

555 Clock Series

 Astable 555 timer - 8-bit computer clock - part 1

 https://www.youtube.com/watch?v=kRlSFm519Bo

 Monostable 555 timer - 8-bit computer clock - part 2

 https://www.youtube.com/watch?v=81BgFhm2vz8

 Bistable 555 - 8-bit computer clock - part 3

 https://www.youtube.com/watch?v=WCwJNnx36Rk

 Clock logic - 8-bit computer clock - part 4

 https://www.youtube.com/watch?v=SmQ5K7UQPMM

Loops in Assembly https://www.youtube.com/watch?v=ZYJIakkcLYw

Build an EEPROM Programmer

 https://www.youtube.com/watch?v=K88pgWhEb1M

https://tinyurl.com/jnq3hrg
https://eater.net/shop
https://tinyurl.com/vzzfu95
https://www.youtube.com/watch?v=fCbAafKLqC8
https://www.youtube.com/watch?v=kRlSFm519Bo
https://www.youtube.com/watch?v=81BgFhm2vz8
https://www.youtube.com/watch?v=WCwJNnx36Rk
https://www.youtube.com/watch?v=SmQ5K7UQPMM
https://www.youtube.com/watch?v=ZYJIakkcLYw
https://www.youtube.com/watch?v=K88pgWhEb1M

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

9

1 Software
You are all but guaranteed never to be in this position again; that is, to write software for a processor that

you intend to build. In learning how to code for a processor that does not exist, you are creating a sense of

mystery, suspending the instant gratification of today’s programming environments in favour of patience,

apprehension, and, ultimately, a feeling of the deepest sense of accomplishment.

We will begin with the language of the CHUMP or ‘CHUMPanese’ as Feinberg called it.

1.1 Instruction Set
The 4-bit parallel address, control and data buses of our TTL processor limits our design to 24 or 16

values for any given interpretation, including the instruction set. The table below list two pairs of the

seven standard instructions in the CHUMP definition. The two variations of an eighth instruction are

meant to be user-defined. Incidentally, this is not exactly the original specification defined by Feinberg.

ACES have discovered a hardware advantage in tweaking the opcodes slightly. This is one of the

unexpected dividends of a rich computer engineering project like this one in which a deep understanding

of the hardware informs optimum software architecture.

OpCode

(Machine)

Operand

(const/mem)

Mnemonic

(Assembly)
Summary

0000 const
LOAD

accum ← const; pc++

0001 mem accum ← [addr]; pc++

0010 const
ADD

accum ← accum + const; pc++

0011 mem accum ← accum + [addr]; pc++

0100 const
SUBTRACT

accum ← accum - const; pc++

0101 mem accum ← accum -[addr]; pc++

0110 const
STORETO

[const] ← accum; pc++

0111 mem [addr] ← accum; pc++

1000 const
READ

addr ← const; pc++

1001 mem addr ← [addr]; pc++

1010 const
USER

?

1011 mem ?

1100 const
GOTO

pc ← const; pc++

1101 mem pc ← [addr]; pc++

1110 const
IFZERO

accum==0? pc ← const : pc++

1111 mem accum==0? pc ← [addr] : pc++

1.2 Program Structure and Storage
First of all, since there is no IDE, CHUMP programs are written either by hand with pencil and paper, or

with the help of a text editor. Word, Excel, TextEdit, Notepad or even the Arduino IDE, all work well.

A CHUMP instruction consists of an 8-bit binary value (one byte). The leftmost 4-bits (high nibble) form

the Operation Code (OpCode) and the rightmost 4-bits (low nibble) provide the operand (a value

interpreted as either a literal constant or the address of a RAM location). The distinction between the two

is made by the LSB of the Opcode (0-constant, 1-address of a RAM location).

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

10

A CHUMP program consists of a maximum of 16 instructions. This limitation is a direct consequence of

the 4-bit address bus.

Programs are flashed onto your 8-bit parallel EEPROM IC

through the use of the ACES’ EEPROM Burner Shield that

has been lent to you. Additional details supporting its use are

provided in a later section.

The EEPROM address of an instruction is that instruction’s de

facto line number. Line numbers can range from 0000 to

1111. Line numbers also serve as targets for the two branch

instructions.

1.3 Instruction Examples

1.3.1 ADD Instruction

The instruction below was written into address 7 of the Program EEPROM. When executed, the ALU

will add 2 to the contents of the Accumulator. The contents of the Program Counter will be increased by

1. The next instruction to be executed is in Program EEPROM address 8.

Line Number Instruction Mnemonic Operand

0111 00100010 ADD 2

1.3.2 IFZERO Instruction

The instruction below was written into address 2 of the Program EEPROM. If the Accumulator contains

the value of 0, the Program Counter is loaded with a value of 6. The next instruction to be executed is in

Program EEPROM address 6.

Line Number Instruction Mnemonic Operand

0010 11100110 IFZERO 6

1.3.3 GOTO Instruction

The instruction below was written into address 15 of the Program EEPROM. The Program Counter is

loaded with a value of 0. The next instruction to be executed is in Program EEPROM address 0.

Line Number Instruction Mnemonic Operand

1111 11000000 GOTO 0

1.3.4 LOAD Instruction

The instruction below was written into address 10 of the Program EEPROM. This instruction expects to

have been preceded by a READ instruction which placed a 4-bit binary value in the Address register (call

it aaaa). This instruction loads the contents of RAM Address aaaa into the Accumulator. The Program

Counter is increased by 1. The next instruction to be executed is in Program EEPROM address 11.

Line Number Instruction Mnemonic Operand

1010 00010000 LOAD 0

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

11

1.4 Program Guidelines
1. CHUMPanese programs are typically developed using the assembly mnemonics with either numeric

operands (in decimal) for constants, or the generic IT for memory instructions. We refer to this form

of CHUMPanese as Assembly Language. When your program is ready for flashing into the Program

EEPROM, it will have to be first translated into its 8-bit binary form. We refer to this form of

CHUMPanese as Machine Language.

2. Each assembly statement should be followed by a short, meaningful comment. The convention is to

start a comment with a semicolon.

3. Every READ instruction must be followed by memory instruction; in which IT stands as a

placeholder for the operand. Conversely, every memory instruction must be preceded by a READ

instruction. This, then, is the general Assembly sequence for RAM access,

 READ __

 ____ IT

4. Your assembly code can make use of variables. A variable is simply a name for the RAM address

where its value is stored. You may wish to maintain a separate table or map for variables and their

corresponding RAM Address.

5. It takes two instructions to load (→ACCUM) the value of a variable.

READ x ;place x in the Address register

LOAD IT ;place contents of RAM address x in the Accumulator

6. It takes only one instruction to write to a variable (→ mem[x]).

STORETO x ;place contents of Accumulator in RAM address x

7. Feinberg has created a wonderful introductory tutorial on the CHUMPanese language and has

created a virtual CHUMP emulator to enable users to test drive their programs by stepping through

each instruction and monitoring the accumulator. This is ideal preparation for our exploration of AVR

Assembly language later in the year in Atmel Studio 7.

a) Open the CHUMP virtual machine at https://codepen.io/davefdavef/full/WNxRpMR

b) Open Feinberg’s tutorial and follow the instructions, https://tinyurl.com/3sxjdrma

c) Review Feinberg’s CHUMP Lab, https://tinyurl.com/7a7rrjv6

https://codepen.io/davefdavef/full/WNxRpMR
https://tinyurl.com/3sxjdrma
https://tinyurl.com/7a7rrjv6

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

12

1.5 Common Program Structures

1.5.1 Swapping Variables

Swapping the contents of two RAM locations, say x and y, in assembly, can be written as follows.

(assume x is 5, y is 10, and temp is 15; [n] means the contents of RAM Address n)

High Level
Machine Level CHUMP (Assembly)

Level
Comment

Address Instruction

temp = x 0000 1000 0101 READ x addr←5, pc++

 0001 0001 0000 LOAD IT accum←[5], pc++

 0010 0110 1111 STORETO temp [15]←accum, pc++

x = y; 0011 1000 1010 READ y addr←10, pc++

 0100 0001 0000 LOAD IT accum←[10], pc++

 0101 0110 0101 STORETO x [5]←accum, pc++

y = temp; 0110 1000 1111 READ temp addr←15, pc++

 0111 0001 0000 LOAD IT accum←[15], pc++

 1000 0110 1010 STORETO y [10]←accum, pc++

1.5.2 if/else Statement

An Assembly if/else decision sequence can be written as follows.

<some instruction> ;the Accumulator has some value

IFZERO zerocase ;is the Accumulator 0?

<nonzero case> ;if not, continue execution here

GOTO after ;bypass the next fragment

zerocase: <zero case> ;execution begins here for 0

after: <continue execution> ;if/else is complete, keep going

In this example, if x is 3, then y is assigned a value of 1, otherwise y is assigned a value of 2. Assume x

is RAM Address 5; y is RAM Address 10; [n] means the contents of RAM Address n.

High Level
Machine Level CHUMP (Assembly)

Level
Comment

Address Instruction
if (x == 3){ 0000 1000 0101 READ x addr←5, pc++

 0001 0001 0000 LOAD IT accum←[5], pc++

 0010 0100 0011 SUBTRACT 3 accum←accum-3, pc++

 0011 1100 0111 IFZERO 7 accum==0?pc←7:pc++

y = 1;} 0100 0000 0010 LOAD 2 accum←2, pc++

 0101 0110 1010 STORETO y [10]←accum, pc++

else { 0110 1010 1001 GOTO 9 pc←9

y = 2;} 0111 0000 0001 LOAD 1 accum←2, pc++

 1000 0110 1010 STORETO y [10]←accum, pc++

 1001 1010 1001 GOTO 9 pc←9 ;∞ loop!

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

13

1.5.3 while Loop

An Assembly while iterative loop (with a != condition) can be written as follows.

 <some instruction> ;the Accumulator has some value

loop: IFZERO after ;if Accumulator is 0, end loop

<loop body> ;one or more statements in loop

GOTO loop ;return to top of loop and test

after: <continue execution> ;loop complete, keep going…

In this example, x has some value (it was explicitly assigned a value of 3 for illustration). The loop

continues as long as x is not 0. The sample loop body simply decrements x. Assume x is RAM Address

5; y is RAM Address 10; [n] means the contents of RAM Address n.

High Level
Machine Level CHUMP

(Assembly) Level
Comment

Address Instruction

x = 3; 0000 0000 0011 LOAD 3 accum←3, pc++

 0001 0110 0101 STORETO x [5]←3, pc++

while(x != 0) 0010 1110 0110 IFZERO 6 accum==0?pc←6:pc++

x--; 0011 0100 0001 SUBTRACT 1 accum←accum-1, pc++

 0100 0110 0101 STORETO x [5]←accum, pc++

 0101 1100 0010 GOTO 2 pc←2

 0110 1100 0110 GOTO 6 pc←6 ;∞ loop!

1.5.4 Array Update

A high-level array assignment statement may

appear as a[i]=x; where a is the array, i is

the index within the array and x the new

contents of array element at i.

For the sake of this example, we’ll assume we

wish to execute the specific assignment

statement, a[2]=7.

We’ll arbitrarily declare a to be an array of

length 5, with a base address in RAM of 10.

The goal is to assign an x value of 7 to a[2],

which would imply a target RAM address of

12.

The CHUMPanese code below first initializes

the variables, prior to determining the target

address and finally, the assignment.

Symbol Table RAM Contents

Variable Address Before After
 0000

 0001

 0010

a 0011 10

i 0100 2

x 0101 7

temp 0110 12

 0111

 1000

 1001

 1010

 1011

 1100 7

 1101

 1110

 1111

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

14

High Level
Machine Level CHUMP (Assembly)

Level
Comment

Address Instruction

i = 2; 0000 0000 0010 LOAD 2 accum ← 2, pc++

 0001 0110 0100 STORETO i [4] ← 2, pc++

x = 7; 0010 0000 0111 LOAD 7 accum←7, pc++

 0011 0110 0101 STORETO x [5] ← 7, pc++

a = 10; 0100 0000 1010 LOAD 10 accum ← 10, pc++

 0101 0110 0011 STORETO a [3] ← 10, pc++

;determine 0110 1000 0100 READ i addr ← 4, pc++

;the target 0111 0011 0000 ADD IT accum += [4](12),pc++

;address 1000 1000 0110 READ temp addr ← 6, pc++

;within 1001 0111 0000 STORETO IT [6] ← 12, pc++

;the array 1010 1000 0101 READ x addr ← 5, pc++

 1011 0001 0000 LOAD IT accum ← 7, pc++

 1100 1000 0110 READ temp addr ← 6, pc++

 1101 1001 0000 READ IT addr ← [6], pc++

 1110 0111 0000 STORETO IT [12] ← 7, pc++

;pause 1111 1100 1111 GOTO 15 pc = 15 ;∞ loop!

Note. It should be clear by now that a single high-level statement typically leads to more than one low-

level assembly language instruction.

1.6 Sample Programs

1.6.1 Feinberg’s Classic (Beginner)

Feinberg offers the program below in his original paper. Add high-level language statements and

comments in the columns reserved in the style of the previous examples.

High Level
Machine Level CHUMP

(Assembly) Level
Comment

Address Instruction

top: 0000 1000 0010 READ 2

 0001 0001 0000 LOAD IT

 0010 0010 0001 ADD 1

 0011 0110 0010 STORETO 2

 0100 1100 0000 GOTO top

Write a short description of what this program does.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

15

1.6.2 Shift Left (Intermediate)

Complete the three missing columns in the conventional style.

High Level
Machine Level CHUMP (Assembly)

Level
Comment

Address Instruction

 0000 LOAD 0

 0001 READ y

 0010 STORETO IT

 0011 READ x

 0100 LOAD IT

next: 0101 IFZERO finish

 0110 LOAD 2

 0111 READ y

 1000 ADD IT

 1001 STORETO IT

 1010 READ x

 1011 LOAD IT

 1100 SUBTRACT 1

 1101 GOTO next

finish: 1110 GOTO finish

Write a short description of what this program does.

1.6.3 Fill (Advanced)

In this final example, you are asked to complete the three missing columns in the conventional style.

High Level
Machine Level CHUMP

(Assembly) Level
Comment

Address Instruction

 0000 LOAD 0

 0001 READ 0

next: 0010 STORETO IT

 0011 READ IT

 0100 ADD 1

 0101 GOTO next

Write a short description of what this program does.

1.6.4 DER TASK: Your First Chumpanese Program

Write a program that will (hopefully) run on your CHUMP processor, six weeks from now. Your DER

entry will include the entire CHUMP Instruction Set, a Table summarizing your code similar to the ones

I’ve presented in the previous pages and a detailed explanation in works of what the program does.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

16

2 Hardware Overview

2.1 The 4-bit TTL Processor Platform
Your ABRA-48 3220 tie-point solderless breadboard serves as sufficient prototyping real estate to

complete the expected CHUMP build. Multiple supply buses across the top and separating standard

breadboards serve to support power and path (address, control, data) design requirements.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

17

2.2 Power
Detailed analysis of power requirements for functioning circuits and designing reliable sources and

operating supports is a topic beyond the scope of this course and the knowledge of this instructor. Having

said that, we can apply some fundamental concepts.

2.2.1 5V DC Voltage Source

Unlike ICs based on CMOS circuitry that can operate with a voltage supply range anywhere from 3-18V,

the TTL family of ICs in our CHUMP project requires a steady, clean 5V power supply (4.5-5.5V).

One drawback this presents is that CHUMP does not run directly from battery power.

For this reason, the Adafruit 5V 2A switching supply pictured to the right and included in both your

Grade 11 and Grade 12 kits, is an ideal clean source. (https://www.adafruit.com/product/276).

2.2.2 DC Voltage Barrel Jack Breakout Board

The RSGC ACES barrel jack breakout board,

originally designed by Puneet.Bagga (ACES ’17,

UofT ’21), is the ideal receptacle for your 5V power

supply. In the image to the right, Puneet returned to

the DES for a visit and was immediately put to work

baking the SMD resistor and LED onto a dozen or so

of his PCBs in the reflow oven created by Allan

Hodgson (ACES ’19, Dal. ‘23)

https://www.adafruit.com/product/276

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

18

2.2.3 Bypass (Smoothing) Capacitors

Electric circuits are vulnerable to electrical noise from the

proximate positioning of components, ground irregularities and

voltage/current spikes that occur from rapid activation and

deactivation of loads.

To achieve smoother power performance, strategic placement

of capacitors can be beneficial. Their use is some fundamental

IC sockets can be purchased (at a significant premium) with

these bypass or decoupling capacitors building in.

Capacitors of various optimum sizes are used depending on the requirements, however this is beyond our

knowledge and current needs. For our purposes, placing even a 10 µF capacitor across the main power

rails aids in the smoothing out of supply demands to achieve steadier power performance. There many

good sources of information on the topic which you are encouraged to review. Here’s a image taken from

a discussion from Intel, (https://www.intel.com/content/www/us/en/programmable/support/support-

resources/operation-and-testing/power/pow-integrity.html).

2.2.4 Voltage Regulation

For the motivated ACES considering a standalone

CHUMP, you may wish to consider assembling your

own voltage regulation source. For this purpose, either

THT or SMT 5V regulators, again, with bypass or

decoupling capacitors, is recommended.

https://www.intel.com/content/www/us/en/programmable/support/support-resources/operation-and-testing/power/pow-integrity.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/operation-and-testing/power/pow-integrity.html

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

19

2.3 Wire Considerations
Over our past two courses you have enjoyed the

relative comfort afforded by the stripped, pre-formed

wire kits of breadboard-friendly lengths. However, the

demanding nature of complex builds like our CHUMP

requires additional considerations for the optimum

wire strategy. Here is my list, roughly prioritized.

1. Solid. I made the mistake years ago of ordering stranded hookup wire instead of the solid equivalent

for my breadboard prototypes. An expensive error I encourage you to avoid.

2. Gauge. Typical breadboard holes are designed to accept between

#21and #26 AWG. I recommend #22 AWG to provide a firm fit.

Note: Sparkfun’s Resistor Kit that has been included in your previous

toolkits were chosen largely because of their price. My sense is that

their leads are between #26 and #28AWG making them almost too

thin for breadboard use.

3. Variable Length. The #22 AWG jumper wire kits from Grade 10

and 11 come in stripped, pre-formed lengths ensuring single board

prototyping build quality remains a priority. On a build as

demanding as CHUMP, this convenience becomes prohibitively

expensive. For example, Digikey sells bags of 200 pcs of each of the

preformed wires you are used to for $30.00 or $0.15 per piece.

ACES must do better. Although it’s more effort stripping and forming

your own wire lengths is far more cost-effective. This why your

Grade 12 kit contains the #22 AWG, 6-colour, solid hookup wire kit pictured below, right. Included

in this year’ kit is a good quality wire stripper that has numerous uses beyond removing the plastic

sheathing from your wires.

4. Colour-Coded Bus Sets. As you will soon

discover, signals between the components of the

processors group themselves into categories

referred to as buses. There are buses for memory

addresses, data, control, and the clock. With 6

wire colours to choose from, assigning a specific

colour to a particular bus simplifies the debugging

challenges and increases the overall presentation

and esthetic aspects of you CHUMP build.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

20

2.4 LEDs for Indication
The complexity of this build and confirmation of its

correctness is aided substantially through the use of

LEDs as signal indicators. Digital multimeters or

probes are useful for testing individual pin status, but

the parallel interdependencies of a processor is best

captured visually.

Signals travel either individually or in groups of 4

(buses) in this project. Flat-faced, rectangular LEDs

are the preferred package as multiple components can

be adjacent to one another without the deflection

resulting from round ones.

You have been provided with red, green and yellow

varieties. Incorporate them strategically in your build.

2.5 Families of Integrated Circuits
There are a few different families of integrated circuits (TTL, CMOS) based largely on power supply

characteristics. Efforts should be made to understand the naming convention employed by each family to

ensure your builds incorporate compatible components.

To this point our ACES program has tended to employ CMOS-compatible technology largely due to the

generous supply voltage range (3-15V). For our CHUMP build, the TTL family with its tight supply

voltage range (4.75-5.25V) is preferred for its quieter noise margin (0.3V).

The 7400 series of Transistor-Transistor Logic (TTL) ICs was developed in 1964 by Texas Instruments

(TI). Since other manufacturers replicated the technology, TI added the prefix SN to indicate their

versions. These ICs are dominant in our CHUMP build.

Regardless of the manufacturer, the 7400 series of ICs should be pin-for-pin compatible. However, within

the family there are differences in technologies that you need to be aware of for successful

interoperability. A quick summary appears below. For further detailed information consult the Electronics

Club (https://electronicsclub.info/74series.htm),Wikipedia or, preferably, the component datasheet.

IC# Manufacturer Rating Vcc Family Details

SN54nn Texas Instruments Military 4.5-5.5 TTL

SN74nn Texas Instruments General 4.5-5.5 TTL

SN74LSnn Texas Instruments General 4.5-5.5 TTL Low-power Schottky

SN74HCnn Texas Instruments General 2.0-6.0 CMOS High-speed CMOS

SN74HCTnn Texas Instruments General 4.5-5.5 CMOS CMOS with TTL Compatibility

74???nn Various General ? ? ?

The suffix N on the IC# simply indicates that the component is in the (THT) PDIP package.

https://electronicsclub.info/74series.htm),Wikipedia

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

21

2.6 Summary of CHUMP Integrated Circuits
To gain an initial sense of the scope of the 4-bit

CHUMP processor and for quick future reference a

summary of the ICs employed is timely.

Each Sr. ACE will be assigned a particular IC with

which to become intimately familiar. As questions

arise, the class will defer to the respective ‘expert’ for

additional insight and guidance.

Respective pin diagrams and details are presented

later in the workbook.

IC # Who? Description Usage

555 All Timer Clock: Clock pulse

SN74LS00 All Quad 2-input NAND Branch: Jump bit logic (Load)

SN74LS04 All Hex Inverter May require inversion of RAM output

SN74LS08 All Quad 2-input AND Optional Control Logic Support

SN74LS32 All Quad 2-input OR Optional Control Logic Support

SN74LS157 Quad 2/1 Data Selector (Mux)
SEL/MUX: Select constant and memory

operand

SN74LS161 4-bit Counter PC: Program Counter

SN74LS174 Hex D-Type Flip-Flop (Latch) Addr: Address Register

SN74LS181 Arithmetic Logic Unit ALU: Arithmetic and Logic Functions

SN74LS189 64-bit (8×8) RAM RAM: Random Access Memory

SN74LS377 Octal D-Type Flip-Flop (Latch) Accum: Accumulator Register

AT28C16 16K (2K×8) Parallel EEPROM Program: Code

AT28C16 16K (2K×8) Parallel EEPROM Control: Logic

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

22

3 Hardware Builds
With the general overview of the hardware resources behind us, we now begin to assemble the processor.

To begin, just as the ATmega328p requires the oscillation of a crystal to define the speed and enable the

synchronous coordination of the MCU assets so, too, does our processor require a heartbeat or clock of its

own. Of the options available, the familiar NE555 Timer IC is a versatile choice, performing well at 5V.

3.1 555 Timer/Clock
Integrated circuits are designed to perform their various functions on the edges (rising or falling) of a

square wave. Furthermore, for the multitude of ICs that make up our CHUMP processor to act

sychronously, they must all be coordinated under a single square wave. Arguably the most versatile

source for a square wave is the familiar 555 Timer IC. We’ll use a number of them in our CHUMP build

to provide our many ICs with a common square wave, or clock pulse.

Ben Eater is one of YouTube’s most informative source of reliable electronics information. His

remarkably clear set of video tutorials on the 555 clock source he developed for his own 8-bit TTL

Processor (https://eater.net/8bit/clock) will form the basis of our own 4-bit, CHUMP Build.

https://eater.net/8bit/clock

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

23

Here are the links to Eater’s 4-part computer clock video series that we will watch again.

1. Astable 555 timer - 8-bit computer clock - part 1

https://www.youtube.com/watch?v=kRlSFm519Bo

2. Monostable 555 timer - 8-bit computer clock - part 2

https://www.youtube.com/watch?v=81BgFhm2vz8

3. Bistable 555 - 8-bit computer clock - part 3

https://www.youtube.com/watch?v=WCwJNnx36Rk

4. Clock logic - 8-bit computer clock - part 4

https://www.youtube.com/watch?v=SmQ5K7UQPMM

3.1.1 The Clock Build

Here is an image of Eater’s final clock build taken from his final video.

For our build, it is recommended to create this clock

circuit on the bottom breadboard of the platform as

shown to the right.

In this way, the square wave output could be placed on

any of the ‘vertical’ supply rails to the left for access

3.1.2 DER TASK: Clock Build

See ACES Task Page for the first stage of the CHUMP

build.

https://www.youtube.com/watch?v=kRlSFm519Bo
https://www.youtube.com/watch?v=81BgFhm2vz8
https://www.youtube.com/watch?v=WCwJNnx36Rk
https://www.youtube.com/watch?v=SmQ5K7UQPMM

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

24

3.2 74LS161 Synchronous Program Counter
Interestingly, this next stage is somewhat familiar to you. Our Grade 10 Counting Circuit employed a

NAND Gate Oscillator as a source for its clock pulse. The square wave output from pin 10 of the CMOS

4011 IC was wired into pin 14 of the CMOS 4017 Decade Counter that advanced and presented its count

on its 10 output pins for each rising edge of the NGO’s pulse.

Our 5V TTL processor uses the 555 as the clock. The SN74LS161N replaces the 4017 counter from

Grade 10. The 555 clock source is wired into pin 2 of the SN74LS161N. Under normal conditions the

count advances, again, on the rising edge of the square wave. The output of the count appears on pins 11

through 14, as shown below.

3.2.1 Program Counter Insights

 When LOAD is high, outputs will increment after each clock pulse (where QA is the low-order

bit). When LOAD is low, outputs will instead match input data after the next clock pulse.

 CLEAR should normally be connected high. A low level at the CLEAR input will immediately

set all outputs to low. (This will be useful for resetting your machine.)

 ENABLE P and ENABLE T should be wired high.

3.2.2 Clock-Influenced IC Block Diagram

Synchronous circuit performance is achieved through the use of

a common clock. The block diagram for ICs that are influenced

by the clock identify the input that receives the signal by means

of a small inward-facing triangle.

The block diagram of a D flip-flop that appears to the right is

one such example.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

25

3.2.3 DER TASK: Program Counter

This stage is a significant step forward as you confirm

that your clock signal can influence the behavior of

another IC, in a predictable manner.

The 74LS161N IC is the BCD program counter. It is

responsible for keeping track of the address within the

Program EEPROM of the next instruction to be

executed.

The inward-facing triangle on the program counter

(PC) of the block diagram to the right indicates that it

receives a clock signal. Here is an excerpt from the

Motorola’s datasheet on the SN74LS161N,

“The LS160A/ 161A / 162A /163A are 4-bit

synchronous counters with a synchronous Parallel

Enable (Load) feature. The counters consist of four

edge-triggered D flip-flops with the appropriate data routing networks feeding the D inputs. All changes

of the Q outputs (except due to the asynchronous Master Reset in the LS160A and LS161A) occur as a

result of, and synchronous with, the LOW to HIGH transition of the clock input (CP).”

3.2.3.1 Placement of the Program Counter

Since the majority of components of the processor are still ahead of us there is little need to be precise

about its placement on the breadboard and the specific wire characteristics to tie it in. Nevertheless, I

include recommendations from Feinberg on this stage,

“Note that the counter and ROM chips we'll be using in this lab will have a permanent home on our

boards. It is recommended that you place the counter in the upper left corner of your board, and

eventually place the ROM immediately to the right of the counter. Wires to switches and LEDs will be

temporary, but other wires will be permanent features of your board, and therefore should be wired very

neatly.”

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

26

3.3 AT28C16 Parallel EEPROM
Unlike volatile RAM (Random Access Memory) that loses its contents

when the power supply is removed, EEPROM (Electronically Erasable

Programmable Read Only Memory) is a form of non-volatile storage that

retains its contents after the power is disconnected. The microprocessors

prior to the 1980s relied on the use of these external EEPROMs.

Microcontrollers eventually evolved as devices with an embedded

microprocessor, EEPROM, ADC and DAC units, Timers, Counters and

other peripherals. Through your familiarity with the ATMEL MCUs in

Grade 11, you have become accustomed to exploiting the non-volatile

ability of the builtin EEPROM

Our CHUMP requires two parallel EEPROM ICs: one for your program

code and one for instruction control codes (used in lieu of combinational

logic). You have been supplied with two AT28C16 ICs. The earlier

ATMEL EEPROM ICs (AT28C16, AT28C17, etc.) as called for in

Feinberg’s original design, are becoming increasingly harder to source for

this build. Fortunately, the EEPROM ICs in this family, with larger memory capacity (ie. AT28C256) are

compatible and available, but are expensive.

Changes to your Arduino code are as simple as pressing the

upload button in the IDE to have the AVRDUDE program

manage the communication protocol through your USB

cable. With our standalone CHUMP processor, the task of

flashing the code we wish to execute is not quite as

straightforward, but we do have three alternatives to

accomplish thetask as described in the next three sections.

A CHUMP program consists of a maximum of 16

instructions. This limitation is a direct consequence of the

4-bit address bus. The EEPROM address of a program’s

instruction is that instruction’s line number. Line numbers can range from 0000 to 1111. Line numbers

also serve as target addresses for the two branch instructions.

3.3.1 TL866 II EEPROM Programmer

One option for flashing the contents of your 8-bit parallel EEPROM IC

is the use of a hardware programmer. The TL866 II EEPROM

Programmer is one such example that ACES have used in the past and

is available from Eater’s shop or Amazon to name two sources. As a

Windows-only, software-driven device and at a cost of about $100, this

may not be the best option for ACES.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

27

3.3.2 Breadboard EEPROM Programmer

The least expensive and readily-available EEPROM programming option is to place your EEPROM on a

breadboard wired to your Nano (or UNO) as shown below. The prototype below includes an optional shift

register/bargraph combination for read and display confirmation. Code will be provided in class. Here’s a

short video of the device flashing the SwappingVariables example: https://tinyurl.com/w24vn6sv.

3.3.3 RSGC ACES AT28C16 EEPROM Programmer Shield

The third option is perhaps the cleanest. In January 2020 a custom AT28C16 EEPROM Programmer

Shield was developed for the UNO. An onboard 24-pin ZIF Socket allows for rapid insertion and removal

of its delicate pins. The onboard shift register/bargraph combination provides read and display

confirmation. Code will be provided in class. Here’s a short video of the device flashing Feinberg’s

Sample code: https://tinyurl.com/vz36u76u.

https://tinyurl.com/w24vn6sv
https://tinyurl.com/vz36u76u

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

28

3.3.3 DER TASK: Program EEPROM

This stage is the first opportunity to combine your

hardware with the software you wrote in the first

stage.

Step 1. Once you have obtained the machine language

version of your code, enter it into the MiniPro

application and flash it into your AT28C16 EEPROM

IC.

Step 2. Place your Program EEPROM in close

proximity with your Program Counter on the

breadboard. The BCD outputs of the PC are wired into

the A0-A3 address lines of the Program EEPROM.

The remaining 7 address lines (A4-A10) must be

grounded (for now:).

Step 3. Once the ICs are wired in, rectangular LEDs

on the 8 output pins of the AT28C16 will (should) confirm your CHUMPanese machine code.

3.3.3.1 AT28C16 16K (2K×8) Parallel EEPROM Pin Connections

When CE and OE are low and WE is high, the data stored at the memory location determined by the

address pins is asserted on the outputs.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

29

3.3.4 Program EEPROM Pagination

Even the AT28C17 EEPROM has far more memory than the 4-bit address bus of the CHUMP can access.

This presents an interesting challenge for ACES to find a way to flash and access multiple programs!

 AT28C17 has 2K×8 bits of storage

 2K is 211 so each byte address requires 11 bits

 CHUMP Program is limited to 16×8 bits

 Result: room for 27 or 128 separate CHUMP programs

 Divide EEPROM up into 128 ‘pages’ with each page holding a CHUMP program

 Addresses are of the form PAGE:OFFSET and can be thought of as PPP PPPP OOOO

 RSGC ACES EEPROM Burner Shield uses A0 through A4 or 5 address bits (32 programs)

 Restricting PAGE to 1 set bit offers access to 8 different pages (shaded blue, below)

 000 001 010 011 100 101 110

0000 A F G H

0001 B

0010 C

0011

0100 D

0101

0110

0111

1000 E

1001

1010

1011

1100

1101

1110

1111

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

30

3.4 74LS181 Arithmetic Logic Unit (ALU)
In September 1979 I started teaching my first course in Computer

Science at RSGC. It wasn’t until the start of the second term, in

January 1980, that we took delivery of some hardware on which

students were able to run their code in our classroom. The

computer we purchased for $25,000 was a DEC PDP-11/03

minicomputer, pictured to the right. A year later our ‘Ladies Guild’

purchased three VT100 terminals that allowed students to enter

and run their programs allowing us to dispense with the card

reader. The interesting feature of this rather expensive hardware

was that its CPU was based on the same SN74LS181 4-bit

Arithmetic Logic Unit you have in front of you that sells for under

$2.00. The Arithmetic Logic Unit (ALU) of a CPU is the IC

containing circuitry to perform single or double operand arithmetic

or logical functions. The circuit symbol for and ALU is as follows,

3.4.1 The 74LS181 ALU

Ken Shirriff, of previous IR and PWM fame, devotes a wonderful blog to explaining the mysteries of the

74181 ALU that even includes an interactive simulation of the ALU,

http://www.righto.com/2017/03/inside-vintage-74181-alu-chip-how-it.html

Pin Names Description

A0 – A3 Operand Inputs

B0 – B3 Operand Inputs

S0 – S3 Function Select Inputs

M Mode Control Input

Cn Carry Input

F0 – F3 Function Outputs

A=B Comparator Output

G Carry Generate Output

P Carry Propagate Output

Cn+4 Carry Output

The A=B output from the device goes high when all four F outputs are high. The A=B output is open-

collector, meaning that it should be connected via a 2.2KΩ resistor to +5 volts.

http://www.righto.com/2017/03/inside-vintage-74181-alu-chip-how-it.html

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

31

3.4.1.1 74LS181 ALU Function Table

S3 S2 S1 S0

Logic

(M = H)

Arithmetic

(M = L) (Cn = H)

L L L L ¬A A

L L L H ¬ (A or B) A or B

L L H L ¬A and B A or ¬B

L L H H Logic 0 minus 1

L H L L ¬(A and B) A plus (A and ¬B)

L H L H ¬B (A or B) plus (A and ¬B)

L H H L A xor B A minus B minus 1

L H H H A and ¬B (A and B) minus 1

H L L L ¬A or B A plus (A and B)

H L L H ¬(A xor B) A plus B

H L H L B (A or ¬B) plus (A and B)

H L H H A and B (A and B) minus 1

H H L L Logic 1 A plus A

H H L H A or ¬B (A or B) plus A

H H H L A or B (A or ¬B) plus A

H H H H A A minus 1

 Arithmetic operations expressed in 2s complement notation.

 In arithmetic mode (M = L), setting Cn = L adds 1 to output.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

32

3.4.2 DER TASK: The ALU

In this segment of your CHUMP journey you are asked to confirm your functional knowledge of the

SN74LS181 ALU in isolation, prior to integrating it into your full processor build. A summary of the

ALU’s function table appears below, left.

Your parts kit includes a pair of DIP-8 rocker switches that are to be laid out as shown below, suitably

pulled down through the use of 1kΩ resistor networks. Rectangular LEDs are suitable replacements for

the bargraph.

Your video should include both a discussion of your build as well as a sampling of a few arithmetic and

logic functions.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

33

3.5 74LS157 Multiplexer (Selector)
Since the operand of a CHUMP instruction can be either

immediate (constant) or a RAM Address, our processor

needs a way to select between the two.

A multiplexer (mux) is an IC consisting of internal

combinational logic that performs this selection task. The

circuit symbol for a mux appears highlighted in the

adjacent CHUMP block diagram.

Inputs known as select pins are employed by the IC to

determine which of the input busses should be passed

through to the output bus. For CHUMP purposes, since

there are only two input buses (Const and Read Data),

each four bits wide, only one select pin is required to

choose between the two. The 74LS157 Quad 2-Line to 1-

Line Data Selector/Multiplexer fulfills this requirement.

3.6 Memory

3.6.1 Latch

Combinational circuitry (that forms in the internal

logic of the 74LS157 mux IC) is such that the output

depends solely on the inputs at any given instant.

Sequential circuitry, on the other hand, combines the

current inputs from the previous state to define the

outputs. For example, two NAND gates wired as

shown to the right, employs feedback to yield the basis

for an SR Latch. Latches are one type of building block of computer memory.

3.6.2 D-Type Flip-Flop

One can build on the concept of a latch to create a device represented by the adjacent

symbol. When G (the "Gate") is 1 (open), the value of the output Q should match the

value of D. When G is 0 (closed), Q should continue to output whatever value it had

when the gate closed. This behavior is summarized in the following table.

G D QOLD Q

0 X 0 0

0 X 1 1

1 0 X 0

1 1 X 1

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

34

In theory, we can connect two latches to create a flip-flop as follows.

This device is called a flip-flop, and acts like a tollbooth with two gates. When one gate is up, the other is

down. This way only one value can get through at once. The CLK ("clock") signal alternates between

low and high values, so as to change which gate is up. When the CLK signal goes up, the original input

D has made it all the way to output Q. We say that a flip-flop is "edge-triggered", and that its output

changes on the "rising clock edge". We'll use the following symbol to represent flip-flops.

Unfortunately, the actual construction of a flip-flop relies on very delicately timed gates. We will

consider such timing issues to be beyond the scope of this course, so we will therefore not be constructing

our own flip-flops.

3.6.3 74LS377 Accumulator (Octal Quad D-Type Flip-Flops)

Upon completion of a requested arithmetic or logic function, the

ALU must have somewhere to store the result for future use. From

the CHUMP block diagram, it is evident that it is the Accumulator

that is the direct recipient of the output of the ALU. Furthermore, a

datapath from the Accumulator to the A input of the ALU is also

required. The clocked 74LS377 Octal Quad D-Type Flip-Flop IC

serves to support the role as the immediate storage register in support of the ALU’s output.

E CP Dn Qn

H X X No Change

L ↑ H H

L ↑ L L

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

35

3.6.4 74LS174 Address (Hex D-Type Flip-Flop)

The contents of the Accumulator typically change with every ALU function. For your code to be useful,

the contents of Accumulator will require more permanent residence in Random Access Memory (RAM).

RAM is similar to a bank of bits (organized in nibbles of bytes), similar to a set of mailboxes, each with

its own unique address. Access to a particular storage location in the CHUMP’s RAM IC (74LS289)

requires an Address IC, the 74LS174. Since our address bus is 4 bits wide, Feinberg employed a 74LS174

Hex D-Type Flip-Flop IC, shown in pin connection diagram below, left.

The interdependency between the pins is summarized in the function table (for each flip-flop) below. In

other words, the CLEAR pin must be wired HIGH to enable the flip-flops.

Clear Clock D Q

L X X L

H ↑ H H

H ↑ L L

H L X Q0

H = HIGH LEVEL (steady state)

L = LOW LEVEL (steady state)

X = Don't Care

↑ = Transition from LOW-to-HIGH level

Q0 = The level of Q before the indicated steady-state input conditions were established

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

36

3.6.5 74LS189/289 RAM (64-bit Random Access Memory)

The 74LS189/289 RAM IC used in our CHUMP processor is

the perfect fit for the sizes of our address (16) and data (4)

paths, combining to yield its 64-bit capacity.

Since the four output pins are open collector types (hence, pull

up resistors required), the output data is the complement of the

stored data. If we wish to use the output data as is, we either

need to invert data before storing it, or afterwards through the

use of the 74LS04 hex inverter.

From the Instruction Table of Section 1, mem[] operations

require some programming care. READ, LOAD and STORETO

instructions allow data to be read from (2 cycles) or written to

(1 cycle).

Pin Names Description

A0 – A3 Address Inputs

CS Chip Select Input (Active LOW)

WE Write Enable Input (Active LOW)

D1 – D4 Data Inputs

O1 – O4 Inverted Data Outputs (Open Collector)

CS WE Operation Condition of Outputs

L L Write Off

L H Read Complement of Stored Data

H X Off Off

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

37

4 CHUMP Glue: The Buses
With the majority of CHUMP processor blocks introduced, some of which independently implemented, it

is time to discuss the communication strategies that allow for the synchronous and communicative

interdependency of the many components.

The synchronous ability of a computer is handled by device connections to a common clock source; in

our case, the 555 Timer. The responsibility for the shared communication between blocks rests with the

concept of a bus.

Communication is achieved through the use of a bus; which is little more than a common set of wires,

each wire carrying a bit (0 or 1) of information. The idea of a bus is not new to ACES. In Grade 11 you

were introduced to a 2-wire (SDA, SCL) method of shared communication between your ATmega328p

MCU and (up to) 127 devices known as the I2C bus (below, left).

The Wikipedia image (above, right) is an abstract generalization of a computer’s (collective) System bus.

The System bus permits the major blocks to access three separate sub-buses (Control, Address, and Data).

Our CHUMP exploits these three buses as well. Our Address and Data buses are 4-wire (bit) buses,

whereas our Control bus consists of 8 (or 9) wires.

4.1 The Address Bus
Within a modern computer the concepts of address and data are easily blurred. On the other hand, for our

CHUMP processor, they are more easily separated. Let’s look at examples of some specific components

that make use of addresses (not the complete list).

The AT28C16/17 Program EEPROM holds our CHUMPanese instructions in consecutive memory

locations identified by a 4-bit address, beginning at 00002, to a maximum address of 11112.

The 74LS161 Program Counter has the responsibility for maintaining the address of the next instruction

in the Program EEPROM to be executed. It is advanced by 1 on the rising edge of the clock signal or

assigned a specific 4-bit value in response to the code’s execution of either a GOTO or IFZERO

instruction.

The 74LS189/289 Random Access Memory uses 4-bit addresses (00002 - 11112) to store 4-bit data values

typically received as output from the Accumulator or input to the B-operand of the ALU.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

38

4.2 The Data Bus
For this discussion, we’ll interpret data to be

the operands of ALU functions. As such,

they are sourced either as lower-nibble

constant of immediate-mode CHUMP

instructions or values obtained by reading a

RAM location. The choice between the two is

controlled by means of the 74LS157 2-to-1

Multiplexer/Selector.

Feinberg’s original notes encourages students

to implement a partial CHUMP build as

shown in the block diagram to the right. Here

were his instructions to his students,

“Go ahead and build the following datapath.

Wire the accumulator's outputs to 4 LEDs.

Temporarily wire 4 switches to the 0 input of

the selector. For each of the 9 control inputs,

use a loop of wire to hard-wire the input to

ground or +5 volts. Finally, wire the output

of an RS circuit to the clock inputs, so that

you can manually simulate running one instruction at a time.

You will also need to fill in the following control table, and use it to test your CHUMP.”

Instruction Sel (ALU) S3 S2 S1 S0 M Cn Accum R/W

LOAD const 0 B 1 0 1 0 1 X 0 1

LOAD IT

ADD const

ADD IT

SUBTRACT const

SUBTRACT IT

STORETO const

STORETO IT

READ const

READ IT

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

39

4.3 The Control Bus
Little information has been included in this workbook to this point on the control codes indicted by the

symbol, ©, that appear as inputs to various components within the block diagram. Suffice-it-to-say,

collectively they form the coordinated control bus. The control bus is akin to the orchestra leader that

instructs which instruments enter and depart the symphony throughout the playing of the piece.

Feinberg made mention of the partial set of control codes in the previous section. In this section, we flesh

out the full set of control codes. Once fully identified, these codes will be flashed into the second

AT28C17 EEPROM in a manner similar to the flashing of the Program EEPROM. The Control

EEPROM serves as a replacement for otherwise complicated combinational circuitry. I will continue

with Feinberg’s original instructions to his students,

“In this part, we will make two improvements. First, we'll add a program counter to our processor, but

we won't use its output yet. Wire the A=B output of the ALU to a NAND, and connect this NAND to the

LOAD input of the program counter. This will enable us to use a control bit and the A=B output to

decide whether to increment the program counter or to load a new value into the program counter

instead.”

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

40

“Eventually, we'll use the counter's output as the address into the Program ROM where the current

instruction can be found. Each instruction will consist of an 8-bit value, where the 4 high-order bits

comprise the OpCode and the 4 low-order bits comprise the constant value. For example, the OpCode

for the ADD-const instruction is 2. Thus, the instruction "ADD 1", which adds 1 to the accumulator, is

represented by the 8-bit value 00100001, shown here. For convenience, each of these bits has been given

a name.”

“With a 4-bit OpCode, we could have as many as 16 distinct operations in our instruction set. Each 4-bit

OpCode must be translated into the ten control bits required by our datapath (9 bits from part 1, plus a

10th to control the program counter). Go ahead and write down each instruction's 10 control bit values.”

Inst Op 7 Op6 Op5 Op4 Sel ALU S3 S2 S1 S0 M Cn Acc RW PC

LOAD const 0 0 0 0 0 B 1 0 1 0 1 X 0 1 0

LOAD IT 0 0 0 1

ADD const 0 0 1 0

ADD IT 0 0 1 1

SUBTRACT const 0 1 0 0

SUBTRACT IT 0 1 0 1

STORETO const 0 1 1 0

STORETO IT 0 1 1 1

READ const 1 0 0 0

READ IT 1 0 0 1

GOTO const 1 1 0 0

GOTO IT 1 1 0 1

IFZERO const 1 1 1 0

IFZERO IT 1 1 1 1

“You may accomplish this translation from 4-bit OpCodes to 10 control bits using combinational logic, or

simply by using a Control ROM. Because our ROM outputs 8-bit values, you'll still need to use a little

cleverness for those last 2 bits. If you decide to use a ROM, you'll need to determine what 8-bit value to

store for each address, and then ask your teacher program these values into a ROM. Either way, you'll

need to wire your control logic, and demonstrate to your teacher that you can control the datapath using

four loops of wire corresponding to an OpCode.”

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

41

4.3.1 Control Code Sample

Here is a possible set of codes that may need to be adjusted for your build.

We are now in the home stretch of our 4-bit minimal computer processor build. As simplified as this

processor is, it will still consist of over one hundred wires. You will want to double-check each wire, as

debugging this project will be rather difficult. No matter how careful you are, you will almost certainly

need to go back and debug your work, which is why neat wiring is essential. This means that your wires

should be measured and bent precisely so that they sit flush against the board. If you do not wire your

board neatly, your teacher will not help you debug your work. In other words, if your wiring is ugly,

you're on your own!

As mentioned previously, you will want to adopt a color convention for your wires and buses. One such

convention is to pick a different color for each path. For example, you might use only blue wires to

connect the selector output to both the flip-flop inputs and the ALU B inputs. Additionally, you might

pick one color for clock signals and another for all control wires.

In the back of this workbook are diagrams of each of the major chips used in this lab. Before you wire

any two pins together, mark the connection on your chip diagrams. Suppose you are connecting the

Program Counter's QA output to the Program EEPROM's A0 input. Next to the Program Counter

diagram's QA pin, write "Prog A0" (or similar), and next to the Program ROM's A0 input, write "PC

QA". As before, if you do not mark these diagrams, you're on your own!

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

42

Programming Your CHUMP
Finally, connect the Program ROM in place of the wire loops and switches, as shown below. Then write

a simple program that makes use of the various instruction types. Assemble the bits for this program, and

ask your teacher to program it into your Program ROM. Finally, demonstrate that your processor runs the

program.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

43

5 Reference: CHUMP Chips

74LS157: Quad 2-Line to 1-Line Data Selectors/Multiplexers

Strobe Select A B Y

H X X X L

L L L X L

L L H X H

L H X L L

L H X H H

STROBE G should normally be wired low. A high level at the STROBE G input will set all outputs to

low.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

44

74LS174: Hex D-Type Flip-Flops with Clear

Clear Clock D Q

L X X L

H ↑ H H

H ↑ L L

H L X Q0

CLEAR should normally be wired high. A low level at the CLEAR input will immediately set all outputs

to low.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

45

74LS181: 4-Bit Arithmetic Logic Unit

Pin Names Description

A0 – A3 Operand Inputs

B0 – B3 Operand Inputs

S0 – S3 Function Select Inputs

M Mode Control Input

Cn Carry Input

F0 – F3 Function Outputs

A=B Comparator Output

G Carry Generate Output

P Carry Propagate Output

Cn+4 Carry Output

The A=B output from the device goes high when all four F outputs are high. The A=B output is open-

collector, meaning that it should be connected via a 2.2KΩ resistor to +5 volts.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

46

S3 S2 S1 S0
Logic:

(M = H)

Arithmetic

(M = L) (Cn = H)

L L L L ¬A A

L L L H ¬A or ¬B A or B

L L H L ¬A and B A or ¬B

L L H H Logic 0 minus 1

L H L L ¬(A and B) A plus (A and ¬B)

L H L H ¬B (A or B) plus (A and ¬B)

L H H L A xor B A minus B minus 1

L H H H A and ¬B (A and B) minus 1

H L L L ¬A or B A plus (A and B)

H L L H ¬A xor ¬B A plus B

H L H L B (A or ¬B) plus (A and B)

H L H H A and B (A and B) minus 1

H H L L Logic 1 A plus A

H H L H A or ¬B (A or B) plus A

H H H L A or B (A or ¬B) plus A

H H H H A A minus 1

 Arithmetic operations expressed in 2s complement notation.

 In arithmetic mode (M = L), setting Cn = L adds 1 to output.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

47

74S189: 64-Bit Random Access Memory

Pin Names Description

A0 – A3 Address Inputs

CS Chip Select Input (Active LOW)

WE Write Enable Input (Active LOW)

D1 – D4 Data Inputs

O1 – O4 Inverted Data Outputs (Open Collector)

Output data is the complement of the stored data. (If you wish to use the output data as is, you'll need to

invert data before storing it.)

CS WE Operation Condition of Outputs

L L Write Off

L H Read Complement of Stored Data

H X Off Off

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

48

74LS377: 8-Bit Register

Pin Names Description

E Enable Input

D0 – D7 Data Inputs

CP Clock Pulse Input (Active Rising Edge)

Q0 – Q7 Flip-Flop Outputs

E CP Dn Qn

H X X No Change

L ↑ H H

L ↑ L L

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

49

AT28C16: 16K (2K x 8) Parallel EEPROM

The CHUMP requires two EEPROM ICs; one for the program and one for the control codes acting as an

alternative to complex combinational logic circuitry. Flashing the EEPROMs is where your EEPROM

burner comes in. Alternatively, Eater has a terrific video the discussing how to exploit a Nano as an

alternative EEPROM burner: https://www.youtube.com/watch?v=BA12Z7gQ4P0

When CE and OE are low and WE is high, the data stored at the memory location determined by the

address pins is asserted on the outputs.

https://www.youtube.com/watch?v=BA12Z7gQ4P0

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

50

Chip Diagrams

Mark all of your connections on these diagrams.

74LS161: Program Counter 74LS157: Selector

AT28C16: Control ROM AT28C16: Program ROM

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

51

74LS181: ALU 74LS377: Accumulator Register

74LS174: Address Flip-Flop 74S189/289: RAM

74LS04: Quad NAND 555: Timer/Counter

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

52

Epilog. Notes from D. Feinberg
This final section is a selection of additional handouts from Feinberg for his students. I include them out

of respect for his original approach to developing and introducing this project and also to serve as good

reminders for ACES.

Lab Rules
By signing this form, the student makes the following promises regarding his/her conduct in the

Computer Architecture course.

I will be extremely careful not to create short circuits.

I will use extreme caution when touching potentially overheating components.

I will never engage in dangerous behavior with power adapters, such as sticking wires in my

mouth, chaining adapters together, etc.

I will use extreme care in handling sharp objects, such as wire strippers, multimeter probes, and

the countless electronic components with small sharp pins.

I will be careful not to force a component into or out of the breadboard.

I will never place another person in danger, whether deliberately or through my negligence. I will

never throw anything in the classroom, out the window, etc. I understand that there will be

serious consequences for such dangerous behavior.

I will never tamper with another student's lab. I understand that such tampering could set another

student's work back many hours, and that any such destruction of property will be dealt with

severely.

I understand that, although there is no textbook, there is a lab fee associated with this course. I

will inform my parent/guardian that my student account will automatically be charged

approximately $65 for lab materials, including wire, a breadboard, a variety of chips, and tools.

Student Signature: ____________________ Date: _______________

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

53

Final Feinberg Thoughts
Since writing my "A Simple and Affordable TTL Processor for the Classroom" paper, I had the

opportunity to teach the course to another 30 students. In light of that experience, here is some practical

advice on how to teach with my lab kit:

1. The most significant change I made the second time I taught the course was in using AC adapters

instead of 9V batteries. This eliminated a lot of issues, but it introduced one new one: the voltage

regulators would get very hot--even with heat sinks. Since then, my colleague has taught the course a

couple of times, and he recommends splurging on regulated 5-volt power supplies, so that you don't

have to worry about the over-heating either. [I haven't actually tried getting regulated supplies yet.]

2. Have the students connect an LED that always shows them if their board is on. That way, if they

have a short, the light will be off, and they'll know to unplug their board quickly before the regulator

overheats.

3. Have the students have a dedicated LED on their board that they can always use as a logic probe. Too

many students would build one, test one pin, and then take apart their logic probe every time. Drove

me nuts. The logic probe should also include a really long wire, so they can reach any part of their

board with it.

4. Near the end of the course, we found that some chips (especially the counters) had very sensitive

output pins, so that the mere act of testing if the pin was outputting a high or low voltage would

actually change the output. Starting in the NAND lab (I think), my handout used to tell the students

to make a logic probe by connecting a long wire to an LED, that to a 330 resistor, and that to

ground. But this turns out not to be a great way to test TTL outputs. The better way is to have them

connect a long wire to the input of an inverter, the output of the inverter to a 330 resistor, the resistor

to an LED, and the LED to 5 volts. The light will normally be on this way, except when the long wire

is connected to a pin whose output is 0V. We found this worked much better with those sensitive

output pins.

5. Loops of wire connected to 0V or 5V are easier to use than the tiny DIP switches. It looks lame, but

most students eventually give up on the DIP switches.

6. Most of the course, you want to use the RS circuit (or something like it) as a manual clock (once you

get to finite state machines). I don't think this is explained well in any of my handouts. The circuit is

given in one of the handouts, but not how to use it. You want to connect the two inputs to loops of

wire that can be easily connected to 0V or 5V. Connect both to 5V normally. Connect the output of

the RS circuit to each chip's clock input. Then connect one of the loops of wire to 0V, then back to

5V, then the other to 0V, then back to 5V. That pattern will simulate one clock tick, cycling the

output of the RS circuit between 0V and 5V in a nice stable way. I'm sure there's a better way, but

I'm not an electrical engineering person.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

54

7. When you do start using the real clock, we found that the clock inputs on the counter chips were also

very sensitive. The workaround we found was to connect the output of the clock circuit through an

inverter, and then to connect the output of that inverter to the clock inputs on the counters and other

chips. That seemed to improve the clock signal.

8. Students were not good at debugging the first time around. I found that it helped to challenge them

from the beginning of the course to become expert debuggers and to not ask me for help all the

time. It also helped to discuss debugging practices explicitly, and to pose hypothetical debugging

problems and ask them how they would go about finding the bug. In the beginning of the course,

students tend to just rip out all their wires and rebuild whenever their circuit doesn't work--something

you definitely want to discourage. Another thing that students did is that, when they debug, they

assume everything's correct, which blinds them to finding whatever they've miswired.

ROYAL ST. GEORGE’S COLLEGE DESIGN ENGINEERING STUDIO

ADVANCED COMPUTER ENGINEERING SCHOOL ICS4U - CHUMP: THE 4-BIT TTL PROCESSOR

55

Appendix A. AVR Optimization Toolkit
Below is the list of parts ordered from ABRA.

Line Part Project Supplier Code/Note

1 1 ABRA-48 Breadboard-3220 Tie Points CHUMP ABRA ABRA-48

1 2 5V DC Adapter 2A CHUMP ABRA/Adafruit 276-ADA (5V 2A)

1 3 HOOK-UP WIRE SPOOL SET CHUMP ABRA/Adafruit 22HW-25-KIT

1 4 Adafruit Wire Strippers/Cutters CHUMP ABRA/Adafruit 147-ADA

1 5 12 VDC 1000mA regulated switching power adapter DC Fan ABRA/Adafruit 798-ADA

1 6 Arduino Nano Compatible v3 ATMEGA328P * ABRA ARD-NANO

1 7 ALU:74LS181 CHUMP ABRA 74LS181

2 8 EEPROM:AT28C16 CHUMP ABRA 28C16A-15

2 9 (Logic) NAND:74LS00 CHUMP ABRA 74LS00

2 10 (Logic) NOT:74LS04 (Inverter for RAM) CHUMP ABRA 74LS04

2 11 (Logic) AND:74LS08 (Branch Control) CHUMP ABRA 74LS08

2 12 (Logic) OR: 74LS32 (Clock) CHUMP ABRA 74LS32

1 13 MUX/SEL: 74LS157 CHUMP ABRA 74LS157

1 14 PC: 74LS161 CHUMP ABRA 74LS161

1 15 ADDRESS: 74LS174 CHUMP ABRA 74LS174

1 16 ACCUM: 74LS377 CHUMP ABRA 74LS377

1 17 RAM: 74189 CHUMP ABRA 74189

4 18 Clock: LM555 CHUMP ABRA LM555

6 19 Clock: Momentary Tactile Button (12mm) CHUMP ABRA PBS-190

3 20 Clock: 0.1uF Capacitor CHUMP ABRA 753-ADA

4 21 Clock: 1uF Capacitor CHUMP ABRA 1R50

4 22 Clock: SPDT Slide Switch CHUMP ABRA SSW-120-BB

20 23 LED 3mm: Red CHUMP ABRA LED-3R

20 24 LED 3mm: Amber CHUMP ABRA LED-3A

20 25 LED 3mm: Green CHUMP ABRA LED-3G

