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1 Introduction

A convenient way to visualise a grammar is to imagine that it is a railway system,
where any valid path taken by a train creates a sentence belonging to the language of
the grammar. These pictorial representations of grammars are called railroad diagrams
or more commonly syntax diagrams.

This note explores syntax diagrams for a subset of the Java language.

2 Types

To start with something simple, consider the syntax for specifying types in Java. In the
following we can see two examples: int and String[] .

int iOffset;
static public void main( String[] args)

We can generalize what we see and and present it using the syntax diagrams in
Figure 1.
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Figure 1: Two syntax diagrams: the left is the type syntax diagram and the right is the
type specifier syntax diagram.

1



School of Informatics, University of Edinburgh Computer Science 1 [03–04]

A terminal is something which is written literally, such as int , while a non-terminal
is expanded into other terminals and non-terminals. In this notation, non-terminals
appear in boxes and terminals are circled.

In this figure we see that types are specified with a type specifier followed by a
number of optional [] . type specifier can be any native Java type or the name of a
class or interface. [] specifies that the type is an array. For the purposes of this note
class name and identifier name mean the same as identifier .

String[] is also a valid type since it is generated by choosing the path through
class name and by taking the optional type path that adds [] . The path through
class name is chosen because String is a class and the path through the [ and then ]
is taken because in our example we have declared an array of String.

3 Identifiers

Java identifiers are the names given for classes, interfaces, packages, methods, and
variables. Properly formed identifiers begin with a letter, underscore, or dollar sign,
are case sensitive and have no maximum length. Figure 2 shows the syntax diagram
corresponding to a Java identifier.

a..z,$,_
a..z,$,_,0..9,unicode character over 00C0

identifier

Figure 2: Identifier syntax diagram.

4 Modifiers

Now let us look at another important part of Java: modifiers. Figure 3 shows the syntax
diagram corresponding to modifiers.
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Figure 3: Modifier syntax diagram.
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5 Variable Declaration

Now we can combine what we have learned so far (types, identifiers and modifiers) into
something more interesting: variable declarations. The following example shows two
variable declarations.

int i, j, k;
private static HashMap data[];

Figure 4 – 6 show the syntax diagram for variable declaration in Java. Try following
the syntax diagrams using the example.

modifier
type variable_declarator

,variable_declarator
;

variable_declaration

Figure 4: Syntax diagram for variable declaration in Java.

The variable declarator non-terminal contains an identifier and an optional ini-
tialiser. Additionally, the variable declarator can specify that the variable is an array.
Note that this is different than a type specified array as shown in Section 2. Figure 5
gives a closer look at this.

identifier
[] = variable_initializer

variable_declarator

Figure 5: Variable declarator syntax.

Finally, the variable initializer (Figure 6) is responsible for giving the variable
its initial values.
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{
variable_initializer

,variable_initializer ,

}

variable_initializer

Figure 6: Syntax diagram for variable initializer.
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6 Reference

Figure 7 – 9 show syntax diagrams for commonly used components of Java. Note that
many of these examples are simplified for brevity.
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Figure 7: Statements and expressions.
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Figure 8: More statements and expressions.5
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Figure 9: A couple more statements and expressions. Class declarations, and methods.
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