
Syntax Diagrams

2004/03/11 13:54:42

1 Introduction

A convenient way to visualise a grammar is to imagine that it is a railway system,
where any valid path taken by a train creates a sentence belonging to the language of
the grammar. These pictorial representations of grammars are called railroad diagrams
or more commonly syntax diagrams.

This note explores syntax diagrams for a subset of the Java language.

2 Types

To start with something simple, consider the syntax for specifying types in Java. In the
following we can see two examples: int and String[] .

int iOffset;
static public void main(String[] args)

We can generalize what we see and and present it using the syntax diagrams in
Figure 1.

type_specifier
[]

type

boolean

char

int

float

double

class_name

interface_name

type_specifier

Figure 1: Two syntax diagrams: the left is the type syntax diagram and the right is the
type specifier syntax diagram.

1

School of Informatics, University of Edinburgh Computer Science 1 [03–04]

A terminal is something which is written literally, such as int , while a non-terminal
is expanded into other terminals and non-terminals. In this notation, non-terminals
appear in boxes and terminals are circled.

In this figure we see that types are specified with a type specifier followed by a
number of optional [] . type specifier can be any native Java type or the name of a
class or interface. [] specifies that the type is an array. For the purposes of this note
class name and identifier name mean the same as identifier .

String[] is also a valid type since it is generated by choosing the path through
class name and by taking the optional type path that adds [] . The path through
class name is chosen because String is a class and the path through the [and then]
is taken because in our example we have declared an array of String.

3 Identifiers

Java identifiers are the names given for classes, interfaces, packages, methods, and
variables. Properly formed identifiers begin with a letter, underscore, or dollar sign,
are case sensitive and have no maximum length. Figure 2 shows the syntax diagram
corresponding to a Java identifier.

a..z,$,_
a..z,$,_,0..9,unicode character over 00C0

identifier

Figure 2: Identifier syntax diagram.

4 Modifiers

Now let us look at another important part of Java: modifiers. Figure 3 shows the syntax
diagram corresponding to modifiers.

public

private

protected

static

final

modifier

Figure 3: Modifier syntax diagram.

2

School of Informatics, University of Edinburgh Computer Science 1 [03–04]

5 Variable Declaration

Now we can combine what we have learned so far (types, identifiers and modifiers) into
something more interesting: variable declarations. The following example shows two
variable declarations.

int i, j, k;
private static HashMap data[];

Figure 4 – 6 show the syntax diagram for variable declaration in Java. Try following
the syntax diagrams using the example.

modifier
type variable_declarator

,variable_declarator
;

variable_declaration

Figure 4: Syntax diagram for variable declaration in Java.

The variable declarator non-terminal contains an identifier and an optional ini-
tialiser. Additionally, the variable declarator can specify that the variable is an array.
Note that this is different than a type specified array as shown in Section 2. Figure 5
gives a closer look at this.

identifier
[] = variable_initializer

variable_declarator

Figure 5: Variable declarator syntax.

Finally, the variable initializer (Figure 6) is responsible for giving the variable
its initial values.

expression

{
variable_initializer

,variable_initializer ,

}

variable_initializer

Figure 6: Syntax diagram for variable initializer.

3

School of Informatics, University of Edinburgh Computer Science 1 [03–04]

6 Reference

Figure 7 – 9 show syntax diagrams for commonly used components of Java. Note that
many of these examples are simplified for brevity.

statement_block

variable_declaration

expression ;

if_statement

while_statement

for_statement

switch_statement

return
expression

;

;

statement

{
statement

}

statement_block

numeric_expression

testing_expression

logical_expression

string_expression

literal_expression

identifier

expression

Figure 7: Statements and expressions.

4

School of Informatics, University of Edinburgh Computer Science 1 [03–04]

expression

>

<

>=

<=

==

!=

expression

testing_expression

–

++

––

expression

expression
++

––

expression

+

+=

–

–=

*

*=

/

/=

%

%=

expression

numeric_expression

import

package_name . * ;

class_name

interface_name

;

import_statement

if (expression) statement
else statement

if_statement

Figure 8: More statements and expressions.5

School of Informatics, University of Edinburgh Computer Science 1 [03–04]

for (

variable_declaration

expression ;

;

expression
;

expression
;) statement

for_statement

expression

expression

logical_expression

expression

|

|=

^

^=

||=

%

%=

&&

true

false

? expressionexpression

&=

&

expression!

:

modifier
class identifier

extends class_name implements interface_name
,interface_name

{
field_declaration

}

class_declaration

modifier
type identifier (

parameter_list
)

[] statement_block

;

method_declaration

type identifier
[]

parameter

parameter
,parameter

parameter_list

Figure 9: A couple more statements and expressions. Class declarations, and methods.

6

	Introduction
	Types
	Identifiers
	Modifiers
	Variable Declaration
	Reference

