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Introduction 
 
Dynamical systems are a well-known branch of mathematics, but until the arrival of 
computers the sheer number of calculations involved made them impractical for real use. The 
computer’s ability to perform rapid calculations allows us to condense billions of calculations 
into results we can digest. Benoit Mandelbrot was the first one to use computers to produce 
graphical representations of dynamical systems in the complex plane, based on the quadratic 
formulas described by the French mathematician Gaston Julia at the beginning of the 20th 
century. 
During the 1980s, fractal enthusiasts began exploring fractals for their artistic merit, not for 
their mathematical significance. While mathematics was the tool, the focus was art. As the 
fractal equation itself was the most obvious mathematical element, fractal artists 
experimented with new equations, introducing hundreds of different fractal types. By 
carefully choosing parameters to refine form, color, and location, these explorers introduced 
the concept of fractal art. 
After 1995, few new major fractal types have been introduced. This is because the newest 
innovations in fractal art do not come from changing the fractal equation, but from new ways 
of coloring the results of those equations. As these coloring algorithms move from simple to 
complex, fractal artists are often returning to the simpler, classical fractal equations. With the 
increased flexibility these sophisticated algorithms provide, there is even more room for 
personal artistic expression. 
 

Coloring Algorithms 
 
Every dynamical system produces a sequence of values z0, z1, z2…  zn. Fractal images are 
created by producing one of these sequences for each pixel in the image; the coloring 
algorithm is what interprets this sequence to produce a final color. 
Typically, the coloring algorithm produces a single value for each pixel. Since color is a 
three-dimensional space, this one-dimensional value must be expanded to produce a color 
image. The common method is to create a palette, a sequence of 3D color values; these are 
connected end-to-end and the coloring algorithm value is then used as a position along this 
multi-segmented line (the gradient). If the last palette color is connected to the first, a closed, 
segmented loop is formed and any real value from the coloring algorithm can be mapped to a 
defined color in the gradient. This is similar to the pseudo-color renderings often used for 
infrared imaging. Gradients are normally linearly interpolated in RGB space (Red, Green, 
Blue), but they can also be interpolated in HSL space (Hue, Saturation, Lightness) and 
interpolated with spline curves instead of straight line segments. 



The selection of the gradient is one of the most critical artistic choices in creating a good 
fractal image. Color selection can emphasize one part of a fractal image while de-emphasizing 
others. In extreme cases, two images with the same fractal parameters, but different color 
schemes will appear totally different. 
Some coloring algorithms produce discrete values, while some produce continuous values. 
Discrete values will produce visible stepping when used as a gradient position; until recently 
this was not terribly important, as the restriction of 8-bit color displays introduced an element 
of color stepping in gradients anyway, and discrete coloring values were mapped to 
corresponding discrete color in the gradient. With the introduction of inexpensive 24-bit 
displays, algorithms which produce continuous values are becoming more important, as this 
permits interpolating along the color gradient to any color precision desired. 
With the increasing significance of coloring algorithms it is surprising that there has been no 
attempt to classify the variety of algorithms that are popping up. The following sections of 
this paper may be considered as an initial classification system for the most important 
algorithms. 
 

 
 

Fig 1. Gradient window linearly interpolated in RGB space with spline curves. 
 

I. The Escape-Time Algorithm 
 
The escape-time algorithm is one of the earliest coloring algorithms, and in many programs it 
is still the only option available. Its simplicity makes it a favorite with those learning to create 
fractal software. From an artistic viewpoint it is becoming less important, because it produces 
discrete values; continuous coloring algorithms have generally superceded it. 
The algorithm itself is based on the number of iterations necessary to determine whether the 
orbit sequence tends to infinity or not. It can be strictly demonstrated that when the orbit of 
any value of z0,  z1,  z2… zn exceeds a border region R, it always diverges towards infinity. The 
minimum size and shape of R are different for each fractal type, of course. If the orbit 
sequence is stopped as soon as zn is outside the border region R, then the coloring value for 
the escape-time algorithm is simply the length of the sequence, that is, n. (This value is 
readily available in actual implementations of fractal software, because a limit must be placed 
on iterations in order to prevent infinite iterating of a single orbit.) 
Traditionally, R is set as a circle, centered at the origin, with radius 2. This is because for the 
Mandelbrot set, it can be proven that as soon as |z| > 2, the orbit will diverge. Interesting 
variations have been created by changing the shape and position of R; ellipses, triangles, stars, 
and so on may be used instead. And while mathematically, R must include the circle of radius 
2 to be accurate in testing for divergence, this has not stopped some artists from 
experimenting with smaller radii. 



 
II. Distance Estimators 

 
The escape-time algorithm can be considered as a measurement of the (non-Euclidean) 
distance from any point z0 to the border of the set. Its use of a discrete value (the number of 
iterations, always an integer) produces a banding effect similar to the contour lines of 
topographic survey maps. Creative use of gradients can actually take advantage of this effect 
(so-called “tiger striping”) but a large number of artists have explored algorithms to hide this 
effect. Clearly, the goal has been to develop continuous functions for this distance 
measurement. None of the algorithms here pretend to give accurate Euclidean distances, but 
generally they provide acceptable continuous values. 
The first historical approach to continuous color values was the distance estimation 
algorithm. It represents the distance of every point to the fractal set, calculated with the 
formula [1] 
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This value is closer to the Euclidean distance. Its isocontours are shaped differently than the 
visible bands from the escape-time algorithm. 
Another variation is the continuous potential algorithm. If the fractal shape in the complex 
plane were extended infinitely above and below the plane as a fractal-shaped “cylinder”, and 
treated as a wire that produces an electrical field, then the electrostatic potential for any point 
z0 is approximated by [2] 
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provided enough iterations (n) are done that |zn| is large. Most fractal artists do not care about 
electrostatic potential, but they are very interested in continuous values. 
 

      
 

Figs. 2a, 2b. Discrete (Escape Time) and continuous (Distance Estimation) color algorithms. 
Note the banding effect in 2a compared with the continuous coloring of 2b. 

 
Of particular interest to fractal artists who have many images created with the escape-time 
algorithm is the normalized iteration count algorithm. The primary advantage of this 
algorithm is that it produces isocontours which are the same as the escape-time algorithm, if 
given the correct parameters, yet it produces continuous values rather than discrete ones. This 
direct adaptation can remove the banding from older escape-time images while preserving the 
rest of the fractal shape. The formula for calculating the normalized iteration count is 
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An interesting quirk of this formula is that it does not depend on the size of the bailout circle 
used; for matching up normalized iteration counts with the simpler discrete iteration counts, it 
is more convenient to use the formula [4]: 
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where b is the bailout radius. 
As a final distance estimator, we introduce e-|z| smoothing. This simply sums e-|z| over all 
iterations; as |z| increases, e-|z| approaches zero and further iterations change the sum very 
little. Like normalized iteration counts, as long as the bailout radius is sufficiently large, the 
precise value bears little impact on the resulting image. 
It should be noted that the formulas given above generally apply to the classic z2+c formula. 
For similar equations where only the exponent is changed, replacing the 2 with the correct 
exponent is often sufficient. For other fractal equations, more radical reworking may be 
required. For e-|z| smoothing, however, no changes are necessary; it works well for almost any 
divergent series. 
 

III. Escape Angle 
 
The formulas discussed so far have only considered the magnitude of z and the iteration 
count. If we think of the magnitude of z as one part of the polar coordinates of z, then it 
becomes natural to consider the other part—the angle of z—for coloring. The escape angle 
family of algorithms covers those algorithms based on the angle of zn. 
The first algorithm here is binary decomposition. With this algorithm, zn with angles above 
the real axis are given one color, and zn with angles below the real axis are given another. 
This is of course a fundamentally discrete algorithm, but it provides a visual approximation to 
the binary form of the field lines surrounding the fractal. While this can provide some 
valuable insights into the structure of fractals, it is not so often used in artistic fractal images. 
Variations on the binary decomposition scheme increase the number of divisions of the plane. 
For example, quaternary decomposition would assign a separate color to each quadrant, with 
zn angles in each quadrant producing the corresponding color. Increasing the number of 
divisions allows more colors to be used. 
Of course, these are all discrete methods; with continuous decomposition, the angle is read 
directly and used as a continuous position along the color gradient. 
 

     
 

Figs. 3a, 3b. Binary decomposition and continuous decomposition of two different Julia sets. 



 
IV. Curvature Estimation 

 
Another aspect of the sequence z0,  z1,  z2… zn that can be measured is the curvature between 
consecutive iterations. A quick estimate can be obtained by using only the last two orbit 
points. A more thorough measure can be obtained by averaging [5] over all iterations. 
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A variation on this method determines the radius of a circle passing through three consecutive 
orbit points. This factors in not only the angle between consecutive points, but the distance 
between them as well. 
 

V. Statistics 
 
Iterating any value z in the complex place produces a sequence of values z0,  z1,  z2… zn, and 
the magnitude of each term can be treated statistically. Mean, range, standard deviation, and 
other common statistical values can be calculated, and the values used directly for coloring. 
 

      
 

Figs. 4a and 4b. Both images show the same formula and region of the complex plane, but different coloring 
algorithms. 4a uses a curvature estimation and 4b is the result of the application of several statistical methods to 

the orbit of zn. 
 
Other more uncommon statistical methods, like the fractal dimension and Lyapunov 
exponent, can also be used, although these work best with bounded data sets. Sometimes it is 
possible to transform the unbounded magnitude of zn into a bounded data set by inverting it 
(1/zn). 
 

VI. Orbit Traps 
 
This is one of the largest families of coloring algorithms, because it provides so many options 
for experimentation. In fact, entire software packages have been built specifically to explore 
this family of coloring algorithms. The basic idea is to choose a region of the complex plane 
(denoted by T) and watch the relationship between the zn values and T. T is usually defined as 
a central shape (usually a simply-calculated item, such as a point, line, or circle) and a 
threshold distance. Everything within the threshold distance of the trap is considered “inside” 
the trap. 
The earliest implementations of orbit trap algorithms simply watched for any zn that fell 
inside the trap, and at the first such value, stopped iterating and colored based on the distance 



to the central trap shape. (This is where the term “trap” comes from; once the orbit fell into T 
it was “trapped” and iteration stopped.) 
 

     
 

Figs 5a and 5b. Hypercross orbit trap in the Mandelbrot set (left). Gaussian integers algorithm in a Julia set 
(right). 

 
There are many more variations, however. The first class of variations covers the shape of the 
trap region, T. With the basic line and circle trap shapes, points of equal distance from the trap 
are the same shape as the trap, e.g. points equidistant from a line form a line. By using non-
Euclidean distance measures, contours of equal distance can be transformed into other shapes; 
points (which with Euclidean distances would generate circular contours) can generate 
squares, astroids, and hyperbolas. Other interesting trap shapes can be created by using 
complex curves as the central trap shape, such as spirals and flowers. Furthermore, these trap 
shapes can be distorted by rotation, skewing, and stretching, often incrementally with each 
iteration. 
Another class of variations deals with the relationship between the distances of each zn to T. 
The classical implementation mentioned above stopped at the first zn within the threshold 
distance to T. Other variations use the last zn to enter the trap, or the closest, or the farthest 
that is still inside the trap. More exotic variations use different methods for combining all 
distances below the threshold together. 
The last major class of variations deals with the actual value used to produce the color. The 
most common method is simply the distance to the trap shape T, be it closest, farthest, first, 
etc. Other choices include the magnitude or angle of zn, or some combination of zn values 
related to the trap distances.  
With so many variations possible, and so many combinations of variations, it is nearly 
impossible to predict exactly what results will be achieved. Sometimes it is even difficult to 
tell a particular image has used the orbit trap algorithm at all. This is one reason this family of 
algorithms is so vastly popular. 
 

VII. Gaussian Integers Algorithm 
 
A Gaussian integer is a complex number whose real and imaginary components are both 
integers. The algorithm works by computing the distance from each zn to the nearest Gaussian 
integer, and then coloring based on the smallest such distance for all orbit values. 
Conceptually, this is like using an orbit trap where the trap shape T (a point) is repeated over 
the complex plane in a regular grid, coinciding with the Gaussian integers. Once perceived in 
this manner, it is clear the technique can be extended to any other trap shape, with different 



grid spacing, and even non-rectangular grids. Radial grids and triangular grids are just two 
possibilities. 
 

VIII. Finite Attractors 
 
Not all orbit sequences z0,  z1, z2… zn tend towards infinity. (For some fractals, very few do!) 
Orbits that do not tend to infinity most often converge to a single point or a periodic cycle. 
While many of the techniques discussed so far can be applied directly to such convergent 
sequences, some require a little tweaking. Still, it is often useful to search for finite attractors 
directly. The simplest method for doing this is to look for a decreasing change in z. As zn 
converges on a fixed point, |zn-zn-1| tends towards zero. Once this difference drops below 
some threshold, we consider the point sufficiently converged to the finite attractor and we 
color accordingly. (We could color based on the iteration count or any other algorithm we 
want.) Using the magnitude of the difference between consecutive iterations produces circular 
iteration bands, but just as changing the shape of the bailout region R for divergent sequences 
changes the shape of discrete iteration bands, so can a similar change can be used for 
convergent sequences. 
This technique works well for sequences which converge to a single point, but some 
adaptations must be made to catch points which converge to a periodic cycle. To do this, one 
iterates to a fixed number of iterations, and then the entire sequence is examined to find the 
first zk which is within some threshold distance of the final zn. In this way, no matter which 
point in the periodic cycle zn settles on at the predetermined iteration limit, at least one value 
along the way almost certainly has approached within a small distance of that point as the 
sequence converges on the periodic cycle. 
 

      
 
Figs. 6a, 6b. Figure 6a shows the attractors of a connected Julia set z2+c. Figure 6b shows the attractors (roots) 

from the equation z6-1=0 iterated under the Newton-Raphson Method [ zn+1 = zn - f(zn) / f’(zn) ]. 
 

IX. 3D Effects 
 
Although fractal images are typically created with a two-dimensional view, it is possible to 
create an image with a three-dimensional appearance through programming effects. 
Essentially, several points very close together (closer than one screen pixel) are iterated in 
parallel; once iteration is completed, a “height” value for each point is computed, a plane 
passed through the three points (now oriented in 3D space), and a vector perpendicular to the 
plane calculated. This gives us a simulated “surface direction” in the vicinity of these points. 
By measuring the angle between this surface normal vector and a light vector L, we can 
compute the amount of light falling on that surface and light it realistically. 



If the light vector L is fixed at the real or imaginary axis, the calculations can be simplified 
substantially and only two points need be iterated in parallel. When the cost of iterating is 
high, this can be an attractive optimization. 
Any of the distance estimator functions provides an excellent height value to use, but the 
technique works fairly well with almost any function. Interesting “embossing” effects can be 
achieved by using a discrete value for height; this produces a terraced appearance. 
 

 
 

Fig 7. The Mandelbrot set surface with a three-dimensional terraced appearance. 
 

X. Other Variations 
 
There are many fractal coloring algorithms which we have not covered here, because they are 
either not common in fractal explorations or because they are specializations of the general 
forms we have already presented. There are also many ways to vary the techniques here to 
produce new algorithms. For example, instead of using |zn| for statistical computations, we 
might use only the real or imaginary component, or the angle of zn. We might use the value of 
zn relative to some other point (perhaps z0). We cannot describe them all! 
A more significant technique involves combining techniques. We call these multi-layer 
fractals, and they are the source of some of the richest fractal imagery being produced today. 
In this way, even a limited collection of fractal coloring algorithms can be combined in almost 
endless ways, with each combination becoming in effect an entirely new algorithm. 
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