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Introduction

Dynamicd sydems ae a wdl-known branch of mahematics, but until the ariva of
computers the sheer number of caculaions involved made them impractical for red use. The
computer’s ability to perform rapid caculations dlows us to condense hillions of cdculations
into results we can digest. Benoit Mandelbrot was the first one to use computers to produce
grephical representations of dynamical systems in the complex plane, based on the quadratic
formulas described by the French mathematician Gaston Julia a the beginning of the 207
century.

During the 1980s, fractd enthusiasts began exploring fractds for ther artistic merit, not for
their mathematicd sgnificance. While mathematics was the tool, the focus was at. As the
fractd eguation itsdf was the most obvious mahematicad dement, fractd atists
expeimented with new eguations, introducing hundreds of different fractd types By
carefully choosing parameters to refine form, color, and location, these explorers introduced
the concept of fractal art.

After 1995, few new magor fractd types have been introduced. This is because the newest
innovations in fractal art do not come from changing the fractal equation, but from new ways
of coloring the results of those equations. As these coloring dgorithms move from dmple to
complex, fractd artigts are often returning to the smpler, classcd fractd eguations. With the
increesed flexibility these sophisticated dgorithms provide, there is even more room for
persond artistic expression.

Coloring Algorithms

Every dynamica system produces a sequence of values zy, z, z... %. Fracta images are
crested by producing one of these sequences for each pixel in the image the coloring
agorithm is what interprets this sequence to produce afina color.

Typicdly, the coloring agorithm produces a single vaue for each pixd. Snce color is a
three-dimensond space, this one-dimensionad vaue must be expanded to produce a color
image. The common method is to creste a palette, a sequence of 3D color values; these are
connected end-to-end and the coloring dgorithm vaue is then used as a pogtion dong this
multi-segmented line (the gradient). If the last palette color is connected to the firdt, a closed,
segmented loop is formed and any red vaue from the coloring agorithm can be mapped to a
defined color in the gradient. This is dmilar to the pseudo-color renderings often used for
infrared imaging. Gradients are normdly linearly interpolated in RGB space (Red, Green,
Blue), but they can dso be interpolated in HSL space (Hue, Saturation, Lightness) and
interpolated with spline curvesingtead of draight line segments.



The sdection of the gradient is one of the most critica artistic choices in creating a good
fractd image. Color sdection can emphasize one pat of a fractd image while de-emphaszing
others. In extreme cases, two images with the same fractd parameters, but different color
schemes will gppear totaly different.

Some coloring agorithms produce discrete vaues, while some produce continuous vaues.
Discrete vadues will produce visble sepping when used as a gradient podtion; until recently
this was not terribly important, as the redtriction of 8bit color displays introduced an element
of color gepping in gradients anyway, and discrete coloring vaues were mapped to
corresponding discrete color in the gradient. With the introduction of inexpensve 24-hit
displays, adgorithms which produce continuous vaues are becoming more important, as this
permits interpolating adong the color gradient to any color precison desired.

With the increasing dgnificance of coloring dgorithms it is surprisng that there has been no
atempt to cdassfy the vaiety of dgorithms that are popping up. The following sections of
this paper may be conddered as an initid classficaion sysem for the most important
agorithms.
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Fig 1. Gradient window linearly interpolated in RGB space with spline curves.
I. The Escape-Time Algorithm

The escape-time algorithm is one of the earliest coloring agorithms, and in many programs it
is dill the only option available. Its amplicity makes it a favorite with those learning to create
fractd software. From an artigtic viewpoint it is becoming less important, because it produces
discrete vaues; continuous coloring agorithms have generaly superceded it.

The dgorithm itsdf is based on the number of iterations necessary to determine whether the
orbit sequence tends to infinity or not. It can be drictly demonsrated that when the orbit of
any vaue of 3, 2z, »... 7 exceeds a border region R, it dways diverges towards infinity. The
minimum sSze and shepe of R are different for each fracta type, of course If the orbit
sequence is stopped as soon as z is outsde the border region R, then the coloring vadue for
the escape-time dgorithm is smply the length of the sequence, that is, n. (This vdue is
reedily avalable in actua implementations of fractal software, because a limit must be placed
on iterations in order to prevent infinite iterating of asingle orbit.)

Traditiondly, R is st as a circle, centered at the origin, with radius 2. This is because for the
Manddlbrot s, it can be proven that as soon as |zl > 2, the orbit will diverge. Interesting
variations have been creasted by changing the shape and pogtion of R dlipses, triangles, Sars,
and so on may be usad ingead. And while mathematicdly, R must include the cirde of radius
2 to be accurate in testing for divergence, this has not stopped some artists from
experimenting with smdler radii.



[l. Distance Estimators

The escape-time dgorithm can be consdered as a measurement of the (non-Euclidean)
distance from any point  to the border of the set. Its use of a discrete vaue (the number of
iterations, aways an integer) produces a banding effect smilar to the contour lines of
topographic survey maps. Credtive use of gradients can actually teke advantage of this effect
(so-cdled “tiger driping”) but a large number of artists have explored agorithms to hide this
effect. Clearly, the god has been to deveop continuous functions for this distance
measurement. None of the agorithms here pretend to give accurate Euclidean distances, but
generdly they provide acceptable continuous val ues.

The firgd higtoricd approach to continuous color vaues was the distance estimation
algorithm. It represents the distance of every point to the fractal set, calculated with the

formula[1]
2|z,|log|z,| [1]
281
This vdue is closer to the Euclidean distance. Its isocontours are shaped differently than the
visible bands from the escape-time dgorithm.

Ancther variation is the continuous potential algorithm. If the fractd shape in the complex
plane were extended infinitely above and below the plane as a fracta-shaped “cylinder”, and

treated as a wire that produces an eectrica field, then the eectrostatic potential for any point
2o is approximated by [2]
log|z,| 2]
2n
provided enough iterations (n) are done that |z,| is large. Most fractd artists do not care about
electrogtatic potentia, but they are very interested in continuous values.
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Figs. 2a, 2b. Discrete (Escape Time) and continuous (Distance Estimation) color algorithms.
Note the banding effect in 2a compared with the continuous coloring of 2b.

Of paticular interest to fractal atists who have many images creasted with the escape-time
dgorithm is the normalized iteration count algorithm. The primary advantage of this
agorithm is that it produces isocontours which are the same as the escgpe-time dgorithm, if
given the correct parameters, yet it produces continuous values rather than discrete ones. This
direct adaptation can remove the banding from older escape-time images while presarving the
rest of the fractd shape. The formulafor caculaing the normalized iteration count is



i1 Iog(log|zn|) (3]
log 2
An interesting quirk of this formula is that it does not depend on the Sze of the balout circle
used; for maching up normdized iteration counts with the smpler discrete iteration counts, it
is more convenient to use the formula[4]:
- log(logh) - Iog(log|zn|) (4]
log 2

where b isthe bailout radius.

As a find distance estimator, we introduce e smoothing. This smply sums € over all
iterations; as |z| increases, € approaches zero and further iterations change the sum very
little. Like normdized iteration counts, as long as the bailout radius is sufficiently large, the
precise vaue bears little impact on the resulting image.

It should be noted that the formulas given above generdly apply to the dassic Z+c formula
For smilar equations where only the exponent is changed, replacing the 2 with the correct
exponent is often sufficient. For other fractd equations, more radica reworking may be
required. For € smoothing, however, no changes are necessary; it works well for dmost any
divergent series.

lll. Escape Angle

The formulas discussed 0 fa have only congdered the magnitude of z and the iteration
count. If we think of the magnitude of z as one pat of the polar coordinates of z, then it
becomes natural to consider the other part—the angle of z—for coloring. The escape angle
family of agorithms covers those agorithms based on the angle of z,.

The firgt dgorithm here is binary decomposition. With this dgorithm, z, with angles above
the red axis are given one color, and z, with angles beow the red axis are given ancther.
This is of course a fundamentdly discrete agorithm, but it provides a visuad gpproximation to
the binay form of the fidd lines surrounding the fractd. While this can provide some
vauable ingghts into the structure of fractas, it is not so often used in artigtic fractd images.
Variations on the binary decomposition scheme increase the number of divisons of the plane.
For example, quaternary decompostion would assign a separate color to each quadrant, with
Z, angles in each quadrant producing the corresponding color. Increasng the number of
divisons alows more colors to be used.

Of course, these are dl discrete methods; with continuous decomposition, the angle is read
directly and used as a continuous position aong the color gradient.

Figs. 3a, 3b. Binary decomposition and continuous decomposition of two different Julia sets.



V. Curvature Estimation

Another aspect of the sequence 3, z, 2... 7 tha can be measured is the curvature between
consecutive iterations. A quick estimate can be obtained by using only the last two orbit
points. A more thorough measure can be obtained by averaging [5] over dl iterations.

tan'leé—Zn i j [5]
8Zn.17 Zn20

A vaidion on this method determines the radius of a circle passng through three consecutive

orbit points. This factors in not only the angle between consecutive points, but the distance

between them as well.

V. Statistics

Iterating any value z in the complex place produces a sequence of vaues 3, a, ... %, and
the magnitude of each term can be treated datigticdly. Mean, range, sandard deviation, and
other common gtatigtical values can be calculated, and the values used directly for coloring.

Figs. 4a and 4b. Both i mages show the same formula and region of the complex plane, but different coloring
algorithms. 4a uses a curvature estimation and 4b is the result of the application of several statistical methodsto
the orbit of z,.

Other more uncommon ddidicd methods, like the fractd dimenson and Lyapunov
exponent, can aso be used, dthough these work best with bounded data sets. Sometimes it is
possble to transform the unbounded magnitude of z, into a bounded data set by inverting it
(Vzy).

VI. Orbit Traps

This is one of the largest families of coloring dgorithms, because it provides so many options
for experimentation. In fact, entire software packages have been built specificaly to explore
this family of coloring adgorithms. The basc idea is to choose a region of the complex plane
(denoted by T) and watch the relationship between the z vaues and T. T is usudly defined as
a centrd shape (usudly a smply-cdculated item, such as a point, ling, or circle) and a
threshold disance. Everything within the threshold distance of the trap is consdered “insde’
the trap.

The ealiet implementations of orbit trap adgorithms smply watched for any z, tha fdl
ingde the trap, and at the first such value, stopped iterating and colored based on the distance



to the centrd trap shape. (This is where the term “trap” comes from; once the orbit fel into T
it was “trapped” and iteration stopped.)

Figs 5a and 5b. Hypercross orbit trap in the Mandelbrot set (left). Gaussian integersalgorithmin a Julia set
(right).

There are many more variaions, however. The firs class of variaions covers the shape of the
trap region, T. With the basc line and circle trgp shapes, points of equad distance from the trap
are the same shape as the trap, eg. points equidigant from a line form a line. By using nort
Euclidean distance measures, contours of equa distance can be transformed into other shapes,
points (which with Euclidean distances would generate circular contours) can generate
squares, astroids, and hyperbolas. Other interesting trap shapes can be created by using
complex curves as the centrd trap shape, such as spirds and flowers. Furthermore, these trap
shapes can be digorted by rotation, skewing, and dretching, often incrementadly with each
iteration.

Another class of variations deds with the rationship between the distances of each z to T.
The cdasscd implementation mentioned above Sopped at the firsd z, within the threshold
distance to T. Other variations use the last z, to enter the trap, or the closet, or the farthest
that is dill ingde the trgp. More exotic variations use different methods for combining dl
distances below the threshold together.

The last mgor class of variations deds with the actud value used to produce the color. The
most common method is smply the distance to the trgp shape T, be it closest, farthest, firdt,
efc. Other choices include the magnitude or angle of z,, or some combination of z, vaues
related to the trap distances.

With so many variations possble, and so many combinations of variaions it is nearly
imposshle to predict exactly what results will be achieved. Sometimes it is even difficult to
tell a paticular image has used the orbit trap agorithm a al. This is one reason this family of
agorithmsis so vastly popular.

VII. Gaussian Integers Algorithm

A Gaussan integer is a complex number whose red and imaginary components are both
integers. The dgorithm works by computing the distance from each z to the nearest Gaussan
integer, and then coloring based on the smalest such distance for dl orbit values.

Conceptudly, this is like usng an orbit trap where the trgp shape T (a point) is repested over
the complex plane in a regular grid, coinciding with the Gaussan integers. Once perceived in
this manner, it is clear the technique can be extended to any other trgp shape, with different



grid spacing, and even non-rectangular grids. Radid grids and triangular grids are just two
possibilities.

VIII. Finite Attractors

Not al orbit sequences 3, a, z... z tend towards infinity. (For some fractals, very few do!)
Orhits that do not tend to infinity most often converge to a sngle point or a periodic cycle.
While many of the techniques discussed so far can be applied directly to such convergent
sequences, some require a little tweeking. Still, it is often useful to search for finite atractors
directly. The amplest method for doing this is to look for a decreasng change in z. As z,
converges on a fixed point, |z:-z.-1| tends towards zero. Once this difference drops below
some threshold, we condder the point sufficiently converged to the finite attractor and we
color accordingly. (We could color based on the iteration count or any other dgorithm we
want.) Usng the magnitude of the difference between consecutive iterations produces circular
iteration bands, but just as changing the shape of the bailout region R for divergent sequences
changes the shape of discrete iteration bands, so can a Smilar change can be used for
convergent sequences.

This technique works well for sequences which converge to a single point, but some
adaptations must be made to catch points which converge to a periodic cycle. To do this, one
iterates to a fixed number of iterations, and then the entire sequence is examined to find the
fird z which is within some threshold disgance of the find z,. In this way, no matter which
point in the periodic cycle z, setles on a the predetermined iteration limit, a least one vaue
adong the way admost cetanly has goproached within a small digance of that point as the
sequence converges on the periodic cycle.

Figs. 6a, 6b. Figure 6a shows the attractors of a connected Julia set Z>+c. Figure 6b shows the attractors (roots)
from the equation z°-1=0 iterated under the Newton-Raphson Method [ z,+1 = z,-f(z,) / f (z)) ].

IX. 3D Effects

Although fractd images are typicaly created with a two-dimensond view, it is possble to
creste an image with a three-dimensond gppearance through programming effects.
Essentidly, severd points very close together (closer than one screen pixd) are iterated in
pardld; once iteration is completed, a “heignt” vadue for each point is computed, a plane
passed through the three points (now oriented in 3D space), and a vector perpendicular to the
plane cdculated. This gives us a smulated “surface direction” in the vicinity of these points.
By measuring the angle between this surface norma vector and a light vector L, we can
compute the amount of light faling on that surface and light it reditically.



If the light vector L is fixed a the red or imaginary axis, the cdculaions can be smplified
subgtantidly and only two points need be iterated in pardld. When the cost of iterding is
high, this can be an atractive optimization.

Any of the digance estimator functions provides an excelent height value to use but the
technique works farly wel with dmogst any function. Interesting “embossng” effects can be
achieved by using adiscrete vaue for height; this produces a terraced appearance.

Fig 7. The Mandelbrot set surface with a three-dimensional terraced appearance.

X. Other Variations

There are many fractd coloring agorithms which we have not covered here, because they are
ether not common in fracta exploratiions or because they are specidizations of the generd
forms we have dready presented. There are dso many ways to vary the techniques here to
produce new dgorithms. For example, ingead of usng |z| for datisticd computations, we
might use only the red or imaginary component, or the angle of z. We might use the vaue of
Z, relative to some other point (perhaps z,). We cannot describe them dl!

A more dgnificant technique involves combining techniques. We cdl these multi-layer
fractds, and they are the source of ®me of the richest fracta imagery being produced today.
In this way, even a limited collection of fracta coloring dgorithms can be combined in dmost
endless ways, with each combination becoming in effect an entirdly new agorithm.
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