Royal St. George’s College

 Computer and Information Science
ICS3U Final Examination

Instructor: C. D’Arcy
Date: Monday June 7, 2010 (12:30 p.m.)
/30
Duration: 2h+; Length: 3 pages

INSTRUCTIONS TO STUDENTS

· This exam counts for 30% of your final mark in this course.

· Appropriate coding style and documentation are expected.

· It is imperative that you name your files exactly as requested. Attach all files to your email to handin at the end of the exam.

· You are allowed access to your previous projects.

· Do not access the internet at any time during the exam with the exception of the final 10 minutes to submit your files.
Julia Sets

As stunning as the Mandelbrot images you’ve created are, there is a set of associated images, called Julia Sets, that many viewers fine even more compelling.

You will recall that the Mandelbrot Set consists of the set of points c, in the Argand (Complex) Plane, whose orbits under the iterative formula, z ← z2+c never reach a magnitude greater than 2.0, where z starts at 0+0i.

The algorithm for Julia Sets is very similar in that the orbits are also considered under the iterative formula, z ← z2+c, however c remains fixed over the entire map while,

-2.0 <= Re(z) <= 2.0 and -2.0 <= Im(z) <= 2.0
(1)
[image: image4.jpg]

[image: image5.jpg]

For example, consider a value of c = 0.38-0.35i. For each pixel on your Content panel, first determine the corresponding complex number, z (over the domain and range from (1) above) and then run a similar conditional loop to determine the number of iterations. The strategy for selecting the colour of the pixel can be the same as for the Mandelbrot Set: if the maximum number of iterations is reached, colour the pixel back, otherwise use the number of iterations as the index into your colour palette.
With Julia Sets it is sufficient to keep the maximum number of iterations reasonable (anywhere from 64 to 256 is plenty).

To get a better idea of the beauty of these images, go to an applet developed by last year’s Grade 12 class at

http://darcy.rsgc.on.ca/ACES/ICS4M/2009Showcase/Final/index.html
As you move the mouse over the Mandelbrot Set, the Julia Set that corresponds to the complex number pointed to by the mouse appears in the right Frame. Also, click the Invert box to see the effect of inverting the palette mapping strategy called for in Task 2 of this exam.

Task 1. (27 Marks)
Incorporate an implementation of the Julia class as defined by the UML diagram below that will facilitate the rendering of a Julia Set defined by the algorithm explained on Page 1. Your program will open with the display of the Mandelbrot Set over the full domain:

-2.25 <= Re(z) <= 0.75 and -1.5 <= Im(z) <= 1.5

When the user selects a point by clicking the mouse, your program will generate and display the Julia Set corresponding to the point. For your reference, points along the coastline of the Mandelbrot Set yield the interesting Julia Sets. Also, keep the maximum number of iterations lower for Julia Sets than for Mandelbrot Sets (usually 31 to 128 is sufficient).
[image: image1.png]Fractal

- double leftBound, rightBound, bottomBound, topBound

- double domain
- int screenHeight, screenWidth

+ Fractal(int w, int h)

+void setBounds(double[] b)
+ double getReal(int column)
+ double getimaginary(int row)

x

Mandelbrot

&
Julia

- ComplexNumber 2,

- final int ITERATIONS = 40

- int iterations

- double [] bounds = {-2.25,0.75,-1.5, 1.5}

- ComplexNumber 2,

- final int ITERATIONS = 31

- int iterations

- double [] bounds= {2.0, 2.0, -2.0, 2.0)

+Mandelbrot (intw, int h)
+void setC (int column, int row)
+boolean isinSet()

+int getiterations()

+ Julia (int w, int h)
+void setC (int column, int row)
+void setZ (int column, int row)
+boolean isinSet()
+ int getiterations()

Task 2. (3 Marks)
[image: image6.jpg]o

.
-
imaginaty

y
L 4

(]
Real

To this point in our examination of fractals, the interior of the Mandelbrot and Julia Sets have remained black while the colour palette was used to reveal the dynamic behaviour of points in the exterior of the Sets. In this final task, you will invert this strategy to expose structure with the interior of the Set.

Under this inverted scheme, pixels whose corresponding points reach a magnitude of 2.0 or greater in fewer iterations than the maximum, are coloured black. Points that do not achieve a magnitude of 2.0 when the maximum number of iterations is reached are assigned a colour from the palette as follows. The final value for the complex number z when the maximum number of iterations is reached is analyzed.
You are familiar with the trigonometric function, tanθ, that provides the ratio of the opposite side over the adjacent side of a right triangle for the interior angle, θ. Mathematics, (and Java) offer you the inverse operation, too. In other words, if you know the ratio of the sides, the atan function in the Math class will give you the corresponding angle (in radians). Once you convert to degrees (Math.toDegrees) you will have angle measure from -90° to +90°. Adding 90 to this value will give you results from 0° to +180°, well within your range of palette indicies!
So, supply the imaginary and real values from your final z value to Math.atan() as the opposite and adjacent values respectively and go from there. Users should be able to toggle between the regular and inverted colour schemes by pressing the i key on the keyboard.
Here are two more Julia images for your enjoyment!

	
	

	[image: image2.png]

Figure 4. c = -0.6672+0.459i; ITERATIONS: 31
	[image: image3.png]

Figure 5. c = -0.765+0.003i; ITERATIONS: 31

Figure � SEQ Figure * ARABIC �2�. Inverted Colour Scheme

Figure � SEQ Figure * ARABIC �1�. Julia Set for c=0.38-0.35i

- 2 -

