

APPLICATION NOTE

INTRODUCTION

It is often necessary for small microprocessor-based
devices to display status information to the user. If the
quantity of information is small, light emitting diodes
(LEDs) can give a simple status display. However, LEDs
are not practical if the volume of information gets too large.
Segmented LED displays allow more information to be
displayed but, LEDs consume power, shortening the life of
battery-operated devices. Liquid crystal display (LCD)
modules are a small, light, low-power alternative. LCD
displays can be purchased that display nearly anything by
using a dot matrix or a segmented display of discrete areas
of liquid crystal.

The drawback to dot matrix LCD is the cost of the
dedicated controller chip that is usually required to drive
the LCD glass. While LCDs are not difficult to control, they
are very unforgiving. They require constant attention
because a voltage change across the liquid crystal can
destroy the crystal structure and ruin the display. Also,
typical dot-matrix display panels require a large number of

signal inputs. This makes it impractical to use dot-matrix
LCD displays without a dedicated driver chip. This chip can
be built directly into the same case as the glass, and this
combination is then called an LCD module.

Note: Application Note AP96Z8X1400, Interfacing LCDs
to the Z8 (found in the Z8 Application Note Handbook),
describes how LCD modules can be used with the Zilog Z8
family of microcontrollers.

LCD displays are also made in a segmented fashion,
however. This type of display uses segments of liquid
crystal to form characters and enunciators, in the same
manner used by LED-segmented displays. Since the total
number of controlled segments is lower than with dot
matrix-type displays, the Z8 can take direct control of the
LCD glass. This application note describes how the
designer can interface directly to a simple LCD using the
Z86X3X and Z86X4X family of microcontrollers.

THEORY OF OPERATION

LCD Basics
A liquid crystal display is manufactured by layering
polarizing liquid crystal between two plates of glass and a
polarizer. (See Figure 1.) When a voltage potential is
developed across the liquid crystal, the crystalline matrix
twists. The effect is that the voltage controls a polarizing
filter, alternately blocking and transmitting light.

Applying the control voltage for too long a period of time
causes the matrix of the liquid crystal to permanently twist,
ruining the polarizing effect. To prevent this problem, the

DIRECT DRIVE OF LCD DISPLAYS 1

USING THE Z8 MCU TO DIRECTLY DRIVE AN LCD DISPLAY SAVES MONEY
AND SPACE FOR SMALL, LOW-COST APPLICATIONS.

Figure 1. LCD Cross Section

Glass

Liquid Crystal

Glass

Polarizer

Reflector
or Backlight
AP97Z8X1800 1

Direct Drive of LCD Displays Zilog

LCD must be pulsed—first in one direction, then in the
other. The shifting effect is neutralized. The voltage is
alternated quickly enough (typically 50 to 100 Hz) that the
eye does not perceive the ON segment as flickering.

Traditional LCD panels were built with one backplane of
glass acting as a common conductor for all the segments.
Another glass plate had a conductor for each segment
brought out to the edge of the panel for connection to the
outside. The signals to drive this type of display are
illustrated in Figure 2.

As the number of segments to be driven increases, the
number of pins required on the driver chip increases
proportionally.

Multiple Backplanes
In order to reduce the number of control lines required, for
large segment counts, modern LCD display panels are
usually built with more than one backplane. This is done by
splitting the backplane glass into several conductors and
connecting more than one segment to each control pin.
Then, by placing a signal on the common pins as well as
the segment pins, the segments can be toggled
independently.

Figure 3a illustrates how two segments can share a
segment driver line and Figure 3b shows the signals that
would be generated to drive the two segments.

In this example, segment A (the top of the character) would
be ON and segment G (the bar across the middle) would
be OFF. The two common planes drive an alternating
signal with periods of zero between each high and low
drive pulse and the planes out of phase with each other.
The common signal pin is then driven with the data for both
pins, the data for common 1, data for common 2, inverted
data for common 1 and inverted data for common 2. Figure
3c shows this sequence.

The resulting waveforms at each segment are shown at
the bottom of Figure 3b. The Root Mean Squared (RMS)
value of the signal on segment A is larger than the initial
voltage of the liquid crystal so it appears dark while the
RMS voltage across segment G is below the threshold so
the segment is clear.

It is important to keep each segment toggling quickly
enough to prevent noticeable flicker. The common planes
must toggle twice as fast in a two-plane configuration, four
times as fast in a four plane, and so forth. Obviously, as the
number of backplanes goes up, the speed of the driving
processor must also increase. This sets up a trade off
between speed of the controller and complexity of the
glass on one side and pin count on the other.

Figure 2. LCD Drive Signal

Figure 3. Two Backplane LCD Example

Segment ONSegment OFF

(50 - 100 Hz Typical)

-Von

+Von

Vcom

AL

Com_1

Com_2

Seg_AG

Figure 4. Two Plane Drive Signals

Figure 5. The Phased Data Sequence

 0 1 2 3 0 1 2 3 “off”Phase

Com_1

Com_2

Seg. G

Seg. A

Seg_AG

DGDADG’DA’DGDA
2 AP97Z8X1800

Zilog Direct Drive of LCD Displays

HARDWARE IMPLEMENTATION

The Application
To demonstrate the method for using the Z8 to directly
drive an LCD glass, this application note implements a
small, battery-operated travel alarm clock. The clock
design has a single alarm setting with a snooze feature
and an audible alarm.

The LCD Glass
LCD glass for this type of application is typically custom
manufactured in volume. This gives the user flexibility in
selecting an initial threshold voltage that matches the
chosen power supply as well as explicitly defines the
appearance of the segments and the number of
backplanes.

For purposes of this note, the circuit is designed around an
LCD that was left over from another project. It has a
threshold voltage of about 1.2 volts, 13 segment lines and
2 backplanes. Using a supply voltage that can range from
3.0 volts down to 2.0 volts, the worst-case RMS voltage
across an OFF segment is calculated as:

which is below the threshold so the segment stays clear.
An ON segment’s worst-case RMS voltage is calculated
as:

which is well above the threshold. Thus, a 3-volt lithium
button-cell supply works nicely.

Driving The Backplanes
Since microprocessors normally do not deal in negative
output voltages, the center line of the plots is usually half
the supply voltage referenced to the ground of the chip.
The positive drive level is the chip supply and the negative
drive level is ground. The liquid crystal is insensitive to the
DC component common to both the backplane and
segment lines, only the difference between them matters.
This can be accomplished using the binary drive of the Z8
as shown in Figure 4.

The common signals can be generated, phase by phase,
simply by driving the three port pins to the correct state.
For example, to generate phase zero, pin P35 would be
driven HIGH and pins P34 and P37 driven LOW. The
common 1 voltage is then LOW while the common 2
voltage is set by the resistive divider from Voh to Vol. The
OFF state can be accomplished by driving all three pins
LOW and driving all the segments LOW. Since the
common mode DC component is ignored by the LCD
glass, this is a safe state. The segment drivers can simply
be connected directly to port pin outputs since they only
need to drive a HIGH or a LOW.

This method allows up to 3 backplanes (an uncommon but
feasible number) times 24 segment lines for a total of 72
segments, including enunciators. This maximum case
leaves only four inputs (port 3, lower nibble) and no free
outputs. An alternative is available if more segments are
required. Figure 5 shows how port 2 can be used as the
common driver using fixed resistor dividers.

Using this method allows up to 8 back planes times 20
segment lines for a total of 160 segments. This
configuration is speed limited, however, and the OFF state
continues to draw current through the dividers unless

()
Voff V=

+
=

15 0

2
1 06

2 2.
.

()
Von V=

+
=

1 2

2
158

2 2

.

Figure 6. Three Level Drive Circuit

Figure 7. Alternate Common Drive

Z86L43

P37

P34

P35

Com_2

Com_1

P2x

Z86L43

Com_x
AP97Z8X1800 3

Direct Drive of LCD Displays Zilog

external circuitry is added to deactivate the power. There
is also a penalty in software complexity if not all of port 2 is
used for plane drivers, and the extra pins are used for
outputs.

The circuit described in this application note uses the first
method of generating the common backplane signals. The
number of segments available from a two backplane
solution is sufficient. (In fact, the Z86L33, 28-pin device is
enough.) The complete schematic is shown on the next
page in Figure 6.

The User Interface
Aside from the LCD glass itself, the user interface consists
of a Piezo buzzer to generate the alarm sound, an optional
LED backlight, five buttons used for setting the time,
setting the alarm, the snooze bar and the backlight, and
the power switch.

The power switch does not actually deactivate the power
since the Z8 must keep running to update the real-time
clock. Instead, the power switch is an input to the Z8.
When the switch is in the OFF position, the Z8 shuts down
the LCD, and ignores the buttons. The reduced software
load lets the Z8 be in HALT mode a higher percentage of
the time, saving current. The switch is a
break-before-make slider built into the clam-shell style

case. When the case is closed, it automatically turns the
switch OFF.

The LED backlight for the LCD is actually not directly
driven by the button input. The Z8 MCU has control of the
LEDs, allowing it to be disabled when the power is OFF
and allowing the light to stay on for a few seconds after the
button is released. The backlight is optional because it
draws significant power from the batteries. A second
battery can easily be added to supply the backlight. This
battery could also be a higher voltage to further improve
battery life or allow a different type of backlight.

The Piezo buzzer is driven by a hardware timer using
timer-out mode. This minimizes the software requirement.
The buzzer is tied between Vcc and the P36 pin with a small
resistor in series to reduce the in-rush current when the pin
toggles.

To protect the circuit from a reversed battery condition, a
diode is placed from the ground to the Vcc pin of the Z8. If
the battery is inserted incorrectly, the diode prevents the
Vcc from going more than 0.7 volts below ground, quickly
discharging and destroying the battery. The more common
method of placing the diode in line between the battery and
the Vcc pin has the drawback of reducing the Vcc voltage at
any given battery voltage. Often, the battery still has some
energy left when the Vcc gets too low to work correctly.
4 AP97Z8X1800

Zilog Direct Drive of LCD Displays

Figure 8. LCD Direct Drive Demo Circuit

Figure 6a. Optional LED Backlight Circuit

10K

15

07

3210

On

Off

1

P00

Power Snooze Set Alarm Adv

P24

P27

GNDVcc

10K

10K

10K

100

XTAL1

XTAL2

1MHz

P37

P34

P3[0..3]

P2[0..4] P0 P35

Z86L33

P

Z

AL

85

13

Piezo
Buzzer

3V
Lithium

P26

P25

P36

4 10K 10K10K10K

Light

68 10KP26
P25

1K
AP97Z8X1800 5

Direct Drive of LCD Displays Zilog

SOFTWARE IMPLEMENTATION

The LCD Driver
The heart of the application is the LCD direct drive
software, of course. The LCD drive is based on a timer
interrupt that runs every 10 ms (100-Hz plane drive
frequency.) This timer interrupt must occur on time since
any deviation causes a net DC voltage to be applied to the
liquid crystal. For this reason, the timer interrupt always
has priority over the other sections of the code. Also, since
math can cause a variable execution length, all the math
for the LCD service is performed in advance. Immediately
after the timer interrupt is acknowledged, the new data is
copied out to the port pins. The service routine then sets
about calculating the data for the next interrupt. This
ensures that the only variable in the placement of edges at
the LCD pins is the interrupt latency.

The LCD and real time clock are driven by timer T1. When
a timer interrupt is issued, the contents of the registers are
copied to the ports. The Z8 then performs the math
required to set up the next phase.

The current phase is set by the values of P37 and an offset
holding register, PHASE_PTR. The value of PHASE_PTR
switches from 1 to 0 at each cycle, and points to the data
to be sent to plane 1 or plane 2. As described in the first
section, the value of P37 causes inversion on the common
planes at alternating cycles.

The common plane voltages are generated by using the
XOR function to flip the appropriate pins for each cycle.
The current value of the port 3 outputs are stored in an
image register to ensure that the XOR function reads valid
data levels and to allow the next plane state to be set up
on the prior cycle. The next state is simply created by
taking the XOR of the current value with a number that
represents the pins that should flip for this cycle. The
number is then updated to change the pins that flip for the
next cycle. Because the pins in question are P34, P35 and
P37, the magic numbers are 0x30 and 0x80, alternately.
The easiest way to flip the number between 0x30 and 0x80
is by alternately adding 0x50 (80 decimal) and 0xB0 (-80
decimal.) Storing the adder value in a register results in the
sign flipping for each cycle just by taking its two’s
complement (COM and then INC.)

LCD Data Manipulation
To display any given combination of segments, all the
software has to do is load the set of data registers with the
correct numbers. Because the data is being inverted for
two out of the four cycles, it is important that the data be
put into the registers at the correct time. To ensure this, the
UPDATE_DISPLAY routine takes data from a set of
holding registers and waits for the interrupt service to tick
as many times as necessary until the LCD is back to phase
0. Then the data is copied into the data registers. This

means the programmer has only to LOAD the holding
registers and CALL the update routine.

For simplicity, the data in the program is stored as a binary
(or BCD) value. It is then easy to use that number as an
offset into a lookup table of seven segment display
characters. The difficulty comes from having two
backplanes for the LCD. The three-and-a-half digits of the
clock are split across the two planes. No two characters
have their segments split up in exactly the same way. So,
some manipulation is required to format the
seven-segment data correctly for the LCD. The
UPDATE_HOURS and UPDATE_MINUTES routines
handle this chore. It would also be possible to create
lookup tables for each digit separately, preformatted for
the LCD, and then use a series of OR operations in the
correct order to get all the data bytes required. This would
use some extra ROM for the lookup tables but would run
faster. It may be an option to consider in a speed-limited
application, especially if ROM space is not at a premium.

The Real Time Clock
Real Time Clock (RTC) applications are fairly common
today with most appliances having clocks on the front
panel. While it is possible to use a dedicated clock chip for
the time keeping, it is often cheaper and easier to do it in
software.

Note: Zilog Z8 Application Note number AP96Z8X1100
(found in the Z8 Application Note Handbook) describes
two methods for generating an RTC in software on the Z8
MCU family. This application is similar to the crystal
method shown there.

One interesting item in the RTC code is the use of the
DISP_HOURS and DISP_MINS pointers. In order to
simplify switching the display from the current time to the
alarm setting or the snooze-timer setting, these registers
point to the actual location of the time to display. The
pointer is used to make a copy of the time registers prior to
doing the manipulation needed before it can be displayed.

Button Inputs
All of the buttons except the backlight button are interrupt
driven. The button routines are set up such that they can
be interrupted by the LCD timer. In fact, the 10 ms LCD
timer is used to create a 50 ms debounce delay after a
button is pressed. Three of the four buttons have at least
two modes of operation. The Alarm button serves to make
the clock display the alarm time setting. It also toggles the
alarm ON and OFF and shuts off the alarm buzzer. The
snooze bar, similarly, causes the clock to display the
snooze time-out setting and causes the alarm to go into
snooze mode if pressed while the buzzer is sounding. The
Advance button does nothing by itself but, when pressed
6 AP97Z8X1800

Zilog Direct Drive of LCD Displays

while one of the other three buttons is held, causes the
displayed time to increment. If the Advance button is
depressed continuously, the rate of change accelerates.
The exception, the Clock Set button, serves only to set the
clock time and only functions in conjunction with the
Advance button.

The backlight button is not interrupt driven. It is sampled
once each 10-ms period, after the LCD is updated. If

pressed, the LED backlight is activated and a two-second
timer is loaded. If the button is still down at the next
sampling, the counter is reloaded. When the button is
released, the counter starts decrementing. When it
reaches zero, the LEDs are extinguished.

The complete software listing is appended below.

;

; LCD_APPS.S

;

;--

;

; A software implementation of a two plane, LCD direct drive

; controller.

;

; This program is designed to implement an alarm clock to

; demonstrate the ability of a Z8 to display data on an LCD

; made up of three 7-segment digits plus several enunciators.

; It is designed around the Z86L33 running a 1MHz crystal.

;

;--

;

;

; -------

; P37 |--------+--+ --------------------------------

; | | | | LCD 1 ||||||||||||||| 15 |

; | < < (4)10K |--------------------------------|

; P36 |-- Spk > > | Z --- BEL --- --- |

; | | | | | | | | | | a |b |

; P35 |--^v^v-----+-- LCD[1] | | | | O | | f| g | |

; | | | --- --- --- |

; P34 |--^v^v--+----- LCD[2] | | | | O | | e| |c |

; | | | | | | | | d | |

; P30-3 |-- Switch[3:0] | --- P --- --- AL |

; | | 1 2 3 4 |

; P2 |-- LCD[15:11] -------------------------------- Vcc

; | ------- 200 ^

; P0 |-- LCD[10:3] Spk ----| Piezo |---v^v^-----------------+

; Z86L33 | ------- (4)10K |

; ------- Switch[3:0] ---+----+----+----+---^v^----+

; | | | |
;

; Phase P37 P35 P34 PL0 PL1 Data |- |- |- |-

; 0 0 0 1 0 Z D1 | | | |

; 1 0 1 0 Z 0 D2 V V V V

; 2 1 1 0 1 Z /D1

; 3 1 0 1 Z 1 /D2
AP97Z8X1800 7

Direct Drive of LCD Displays Zilog

;

; LCD Pin: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

; PL0: COM1 x COL D2 E2 G2 C2 E3 G3 C3 E4 G4 C4 D4 Z

; PL1: x COM2 P BC1 F2 A2 B2 F3 AD3 B3 F4 A4 B4 BEL AL

;

;

;--

;

; Defines

LCD_group .EQU %00

PHASE_PTR .EQU R4

SWITCH_PLANE .EQU R5

NEXT_PLANE .EQU R6

P0_DATA1 .EQU R8

P0_DATA2 .EQU R9

P1_DATA1 .EQU R10

P1_DATA2 .EQU R11

P2_DATA1 .EQU R12

P2_DATA2 .EQU R13

GL_LIGHT_CNT .EQU %0E

P3_COPY .EQU R15

GL_P3_COPY .EQU %0F

CLK_group .EQU %10

P0D1_NEXT .EQU R0

P0D2_NEXT .EQU R1

P1D1_NEXT .EQU R2

P1D2_NEXT .EQU R3

P2D1_NEXT .EQU R4

P2D2_NEXT .EQU R5

DISP_HOURS .EQU R6

DISP_MINS .EQU R7

HOURS .EQU R8

GL_HOURS .EQU CLK_group+8

BLANK_HOURS .EQU %28 ; CAUTION!

MINUTES .EQU R9

GL_MINUTES .EQU CLK_group+9

BLANK_MINS .EQU %29 ; CAUTION!

HALF_SECS .EQU R10

HUNDRETHS .EQU R11

ALARM_HOURS .EQU R12

GL_A_HOURS .EQU CLK_group+12

ALARM_MINS .EQU R13

GL_A_MINS .EQU CLK_group+13

SNOOZE_MINS .EQU R14

CLK_STATUS .EQU R15

GL_CLK_STATUS .EQU CLK_group+15

; CLK_STATUS bit masks
8 AP97Z8X1800

Zilog Direct Drive of LCD Displays

TIME_SET .EQU 00000001B

AM_PM .EQU 00000010B

ALARM_AM_PM .EQU 00000100B

SETTING .EQU 00001000B

POWER .EQU 00010000B

SNOOZE .EQU 00100000B

ALARMING .EQU 01000000B

ALARM_ON .EQU 10000000B

WORK_group .EQU %20

SCRATCH0 .EQU WORK_group

SCRATCH1 .EQU WORK_group+1

SCRATCH2 .EQU WORK_group+2

SCRATCH3 .EQU WORK_group+3

DEBOUNCE_CNT .EQU WORK_group+4

ADVANCE_CNT .EQU WORK_group+5

ALARM_TIME .EQU WORK_group+6

SNOOZE_TIME .EQU WORK_group+7

; BLANK_HOURS .EQU R8

; BLANK_MINS .EQU R9

PTR_HI .EQU R10

PTR_LO .EQU R11

TAB_PTR .EQU RR10

HOLD1 .EQU WORK_group+12

HOLD2 .EQU WORK_group+13

HOLD3 .EQU WORK_group+14

HOLD4 .EQU WORK_group+15

; Enunciator bit masks

PM_ON .EQU 00000001B

COLON_BLINK .EQU 00000001B

BEL_ON .EQU 00001000B

Z_ON .EQU 00010000B

AL_ON .EQU 00010000B

ONE_ON .EQU 00000010B

; Bit mask for backlight control

LIGHT_BIT .EQU 00100000B

; Interrupt masks

ALL_BUTTONS .EQU 00101111B

NO_BUTTONS .EQU 00100000B

ADV_ONLY .EQU 00100010B

SET_ONLY .EQU 00100100B

CLR_BUTTONS .EQU 11110000B

; Extended register file defines

PCON .EQU %00

SMR .EQU %0B
AP97Z8X1800 9

Direct Drive of LCD Displays Zilog

WDTMR .EQU %0F

; Interrupt vector table

.ORG %00

.WORD ALARM_BUTTON ; IRQ0 (P32) ; Alarm button

.WORD ADV_BUTTON ; IRQ1 (P33) ; Advance button

.WORD SET_BUTTON ; IRQ2 (P31) ; Time set button

.WORD SNOOZE_BAR ; IRQ3 (P30) ; Snooze bar

.WORD Init ; IRQ4 (T0) ; Just carrier, no IRQ

.WORD T1_SERVICE ; IRQ5 (T1) ; Master clock/LCD timer

; Start main program

.ORG %0C

; Initialize the part

Init: DI

.WORD %310F ; SRP #%0F ; Config SMR/PCON/WDTMR

LD WDTMR #%13 ; Min Current

LD SMR #%22 ; ; Div by 1 mode

LD PCON #%16 ; ; Low EMI (%06 for L43)

SRP #%00

LD P01M #%04 ; ; Set P0,1=out, Int Stack

LD P2M #%C0 ; ; Set P2=out, P26,7 = in

LD P3M #%01 ; Set P3=IO, Pull P2

LD IPR #%04 ; LCD>Snz>Tim>Alm>Adv>T0

LD IMR #SET_ONLY ; Enable T1 and TimeSet

CLR SPH

LD SPL #%F0 ; Init Stack Pointer

CALL CLK_INIT

CALL LCD_INIT

EI ; Init IRQ

CLR IRQ ; P31/2 falling edge Ints

SRP #CLK_group

MAIN: TM CLK_STATUS #POWER ; Is power on or off?

JR Z POWER_OFF

POWER_ON: TM P2 #%80 ; Has switch moved?

JR NZ NO_CHANGE

TURN_OFF: CALL DEBOUNCE ; Discard pending buttons

AND CLK_STATUS #^C(POWER) ; Clear power bit

AND CLK_STATUS #^C(ALARMING) ; Shut off alarm

AND TMR #%FC ; Shut off buzzer

CALL LCD_INIT ; Shut off LCD

JR NO_CHANGE

POWER_OFF: TM P2 #%80 ; Has switch moved?

JR Z NO_CHANGE

TURN_ON: CALL DEBOUNCE ; Discard pending buttons

LD IMR #ALL_BUTTONS ; Back to normal

OR CLK_STATUS #POWER ; Set power bit
10 AP97Z8X1800

Zilog Direct Drive of LCD Displays

TM CLK_STATUS #TIME_SET ; Is the time set?

JR NZ NO_CHANGE

LD IMR #SET_ONLY ; T1 and TimeSet Only

NO_CHANGE: EI

NOP

HALT ; Stay in HALT until timer ticks

NOP

JR MAIN

CLK_INIT: LD PRE0 #%05 ; No prescale, Mod-N mode

LD T0 #34 ; (decimal) Generate 3.7kHz tone

SRP #CLK_group

LD HOURS #%12 ; Start at midnight

CLR MINUTES

LD HALF_SECS #120 ; (decimal)

LD HUNDRETHS #50 ;(decimal)

LD ALARM_HOURS HOURS ; Alarm time = midnight

CLR ALARM_MINS

LD CLK_STATUS #00100000B ; AM, alarm off, snooze off

LD DISP_HOURS #GL_HOURS ; Display current time

LD DISP_MINS #GL_MINUTES ; (Note: these are POINTERS)

CLR P0D1_NEXT ; Clear display and all enunciators

CLR P0D2_NEXT

; CLR P1D1_NEXT

; CLR P1D2_NEXT

CLR P2D1_NEXT

CLR P2D2_NEXT

CLR GL_LIGHT_CNT ; Make sure light is off

LD BLANK_HOURS #%FF

LD BLANK_MINS #%FF

LD SNOOZE_TIME #%05 ; Set minutes to snooze

LD ALARM_TIME #%05 ; Set longest alarm time

CALL UPDATE_HOURS ; Load “Next” registers

CALL UPDATE_MINS

RET

LCD_INIT: SRP #LCD_group

AND TMR #%F3 ; Stop T1

CLR R0 ; Clear display

CLR R1

CLR R2

CLR R3

LD R4 #%00 ; Phase 0 is next

LD R5 #%30

LD R6 #%50

LD P3_COPY #%10 ‘ ; Initialize to Phase 3
AP97Z8X1800 11

Direct Drive of LCD Displays Zilog

CALL UPDATE_DISP; ; Stuff working registers

LD PRE1 #%2B ; 10 prescale, contin mode

LD T1 #250 ; (decimal) 100Hz Timer

LD TMR #%4C ; Start T1 / Tout0 mode

RET

; Key debounce. Used by all four key routines.

DEBOUNCE: DI

LD IMR #NO_BUTTONS ; Ignore further button IRQs

EI

CLR DEBOUNCE_CNT

DBNCE_LOOP: CP DEBOUNCE_CNT #%05 ; Wait 50 mS

JR NE DBNCE_LOOP

DI

AND IRQ #CLR_BUTTONS ; Discard any buttons pending

RET

SET_BUTTON: CALL DEBOUNCE

TM CLK_STATUS #ALARMING ; Is the alarm ringing?

JR Z SET_TIME

EI

JR SET_LOOP ; Wait for button release

SET_TIME: OR CLK_STATUS #(TIME_SET + SETTING)

LD DISP_HOURS #GL_HOURS ; Make sure time is displayed

LD DISP_MINS #GL_MINUTES

AND P2D1_NEXT #^C(Z_ON) ; Turn “Z” off

AND P2D2_NEXT #^C(AL_ON) ; Turn “AL” off

LD IMR #ADV_ONLY ; Only allow ADV button or T1 IRQs

EI

SET_LOOP: TCM P3 #00000010B ; Wait for button release

JR NZ SET_LOOP

CALL DEBOUNCE

AND CLK_STATUS #^C(SETTING)

LD IMR #ALL_BUTTONS ; Back to normal

IRET

ALARM_BUTTON: CALL DEBOUNCE

TM CLK_STATUS #ALARM_ON ; Is the alarm on?

JR Z SET_ALARM

AND P2D2_NEXT #^C(BEL_ON) ; Turn off bell indicator

AND P2D1_NEXT #^C(Z_ON) ; Turn off snooze indicator

AND CLK_STATUS #01111111B ; Turn alarm off

AND CLK_STATUS #^C(ALARMING) ; Shut off alarm if ringing

OR CLK_STATUS #SNOOZE ; Turn off snooze mode

AND TMR #%FC ; Silence alarm

EI
12 AP97Z8X1800

Zilog Direct Drive of LCD Displays

JR ALM_LOOP

SET_ALARM: OR CLK_STATUS #SETTING

LD DISP_HOURS #GL_A_HOURS ; Display alarm time

LD DISP_MINS #GL_A_MINS

OR P2D2_NEXT #AL_ON ; Turn “AL” on

OR P2D2_NEXT #BEL_ON ; Turn on bell indicator

OR CLK_STATUS #ALARM_ON ; Turn alarm on

LD IMR #ADV_ONLY ; Only allow ADV button or T1 IRQs

EI

ALM_LOOP: TCM P3 #00000100B ; Wait for button release

JR NZ ALM_LOOP

CALL DEBOUNCE

LD DISP_HOURS #GL_HOURS ; Display current time

LD DISP_MINS #GL_MINUTES

AND P2D2_NEXT #^C(AL_ON) ; Turn “AL” off

AND CLK_STATUS #^C(SETTING)

LD IMR #ALL_BUTTONS ; Back to normal

IRET

SNOOZE_BAR: CALL DEBOUNCE

OR P2D1_NEXT #Z_ON ; Turn “Z” indicator on

TM CLK_STATUS #ALARMING ; Is the alarm ringing?

JR NZ START_SNOOZE

LD DISP_HOURS #BLANK_HOURS ; Display snooze timer

LD DISP_MINS #SNOOZE_TIME

OR CLK_STATUS #SETTING ; Setting mode

LD IMR #ADV_ONLY ; Allow T1 or ADV key IRQs

EI

JR SNOOZE_LOOP

START_SNOOZE: AND CLK_STATUS #^C(SNOOZE) ; Set snoozing mode

LD SNOOZE_MINS SNOOZE_TIME ; Init snooze counter

AND TMR #%FC ; Silence alarm

EI

SNOOZE_LOOP: TCM P3 #00000001B ; Wait for button release

JR NZ SNOOZE_LOOP

CALL DEBOUNCE

LD DISP_HOURS #GL_HOURS ; Display time

LD DISP_MINS #GL_MINUTES

TM CLK_STATUS #SNOOZE ; Snooze mode?

JR Z SNOOZE_DONE

AND P2D1_NEXT #^C(Z_ON) ; Turn “Z” off

AND CLK_STATUS #^C(SETTING) ; Done setting

SNOOZE_DONE: LD IMR #ALL_BUTTONS ; Back to normal

IRET
AP97Z8X1800 13

Direct Drive of LCD Displays Zilog

ADV_BUTTON: PUSH IMR

 CALL DEBOUNCE

EI

TM CLK_STATUS #ALARMING

JR NZ ADV_DONE ; Do nothing if alarm ringing

TM CLK_STATUS #SETTING

JR Z ADV_DONE ; We’re not in set mode, exit

LD SCRATCH0 P3

COM SCRATCH0

AND SCRATCH0 #%0F

ADV_ALARM: CP SCRATCH0 #%0C ; ADV and ALARM buttons only?

JR ADV_CLOCK

ADV_TIME: CP SCRATCH0 #%0A ; ADV and SET buttons only?

JR NE ADV_SNOOZE

ADV_CLOCK: CLR ADVANCE_CNT

CLR SCRATCH2

ADV_LOOP: CP ADVANCE_CNT SCRATCH2 ; Wait for half second tick

JR EQ ADV_LOOP

LD SCRATCH2 ADVANCE_CNT ; Save current counter

ADVANCE: TM P3 SCRATCH0 ; Either button released?

JR NZ ADV_DONE

ADD @DISP_MINS #%01 ; Add a minute (BCD)

DA @DISP_MINS ; Fix BDC

CP @DISP_MINS #%60 ; Roll minutes?

JR NE ADV_UPDT

CLR @DISP_MINS ; Reset minutes

ADD @DISP_HOURS #%01 ; Add an hour (BCD)

DA @DISP_HOURS ; Fix BCD

CP @DISP_HOURS #%12 ; Roll hours?

JR LE NO_ROLL_ADV

LD @DISP_HOURS #%01 ; Roll the hours

NO_ROLL_ADV: JR NE ADV_UPDT

XOR CLK_STATUS SCRATCH0 ; Toggle appropriate AM_PM

XOR CLK_STATUS #SETTING ; Fix SETTING bit

ADV_UPDT: CALL UPDATE_CLK ; (Leaves INTs disabled)

EI

CP ADVANCE_CNT #%10 ; Go into fast mode (>15 INCs)

JR ULT ADV_LOOP

FASTMODE: CALL DEBOUNCE ; (Just to wait the 50mS)

EI

LD ADVANCE_CNT #%10 ; (To prevent roll over to 00h)

JR ADVANCE
14 AP97Z8X1800

Zilog Direct Drive of LCD Displays

ADV_SNOOZE: CP SCRATCH0 #%09 ; ADV and SNOOZE buttons only?

JR NE ADV_DONE

ADV_SNOOZE1: CLR ADVANCE_CNT

ADV_SNZ_LOOP: CP ADVANCE_CNT #%000 ‘ ; Wait for half second tick

JR Z ADV_SNZ_LOOP

ADD SNOOZE_TIME #%01 ; Inc snooze limit (BCD)

DA SNOOZE_TIME

CP SNOOZE_TIME #%31 ; 30 mins max

JR NE NO_ROLL_SNZ

LD SNOOZE_TIME #%01

NO_ROLL_SNZ: CALL UPDATE_CLK ; Leaves Ints disabled

EI

TM P3 #%09 ; Either button released?

JR Z ADV_SNOOZE1

ADV_DONE: TM P3 #00001000B ; Wait for button release

JR Z ADV_DONE

CALL DEBOUNCE

POP IMR

IRET

T1_SERVICE: ; This INT takes care of the LCD refresh, it must be on

; time to prevent DC offset.

SRP #LCD_group

TM GL_CLK_STATUS #POWER ; Do not update LCD if power is off

JR Z LCD_OFF

LD R0 %08(R4) ‘ ; R8,9 hold P0’s D1 and D2 resp.

; LD R1 %0A(R4) ; R10,11 “ P1 “ “ “ “

LD R2 %0C(R4) ; R12,13 “ P2 “ “ “ “

LD R3 P3_COPY

CHK_LIGHT: TM P2 #%40 ; Test P26 input

JR NZ LCD_OFF

LD GL_LIGHT_CNT #%04 ; Force light for 1 sec

LCD_OFF: XOR P3_COPY R5 ; Update Plane outputs

XOR R4 #%01 ; Switch D pointer

JR NZ SKIPCOMP ; Only invert every other time

COM R8 ; Invert the data for next phase

COM R9

; COM R10

; COM R11

XOR R12 #%1F; (Only lower 5 bits of P2 used)

XOR R13 #%1F

SKIPCOMP: ADD R5 R6 ; Update Plane modifier

COM R6 ; Switch sign (+50h / -50h)

INC R6

CALL CLK_TICK
AP97Z8X1800 15

Direct Drive of LCD Displays Zilog

IRET

CLK_TICK: SRP #CLK_group

; each 10mS

INC DEBOUNCE_CNT

DJNZ HUNDRETHS CLK_EXIT ; Count 100ths of a second

LD HUNDRETHS #50 ;(decimal)

; each half second

AND P2D1_NEXT #^C(LIGHT_BIT)

AND P2D2_NEXT #^C(LIGHT_BIT) ; Turn off the backlight

SRA GL_LIGHT_CNT

JR Z LIGHT_OFF

OR P2D1_NEXT #LIGHT_BIT

OR P2D2_NEXT #LIGHT_BIT ; Turn on the backlight

LIGHT_OFF:

INC ADVANCE_CNT

TM CLK_STATUS #TIME_SET ; See if the time is set

JR NZ TICK1

XOR DISP_HOURS #%30 ; Blink the display...

XOR DISP_MINS #%30

JR UPDATE_CLK ; and don’t increment time

TICK1: XOR P0D1_NEXT #COLON_BLINK ; Toggle colon bit

TCM CLK_STATUS #(ALARMING + SNOOZE) ; Alarming & not snooze?

JR NZ NOT_ALARMING

XOR TMR #00000010B ; Toggle the buzzer on/off

NOT_ALARMING: DJNZ HALF_SECS UPDATE_CLK ; Count half seconds

LD HALF_SECS #120 ; (decimal)

; each minute

ADD MINUTES #%01 ; BCD so add, not inc

DA MINUTES

CP MINUTES #%60 ; BCD

JR NE CHK_ALARM

CLR MINUTES

; each hour

ADD HOURS #%01 ; BCD so add, not inc

DA HOURS

CP HOURS #%12 ; BCD

JR LE NOT_NOON

LD HOURS #%01

NOT_NOON:JR NE CHK_ALARM

XOR CLK_STATUS #AM_PM

; each minute

CHK_ALARM: TM CLK_STATUS #POWER ; Skip alarm if power off

JR Z UPDATE_CLK

CALL CHECK_ALARM

; each half second

UPDATE_CLK: CALL UPDATE_HOURS

CALL UPDATE_MINS
16 AP97Z8X1800

Zilog Direct Drive of LCD Displays

CALL UPDATE_DISP ; Write the new time data

CLK_EXIT: RET

CHECK_ALARM: TM CLK_STATUS #ALARM_ON ; Alarm on?

JR Z ALARM_DONE

TM CLK_STATUS #ALARMING ; Alarm ringing?

JR Z CHECK_TIME

TCM CLK_STATUS #SNOOZE ; Snooze bar counter running?

JR Z NOT_SNOOZING

DJNZ SNOOZE_MINS ALARM_DONE ; Subtract one snooze minute

AND P2D1_NEXT #^C(Z_ON) ; Turn “Z” off

LD ALARM_TIME #%05 ; Reset max alarm time

JR SND_ALARM ; “Get up you bum!”

CHECK_TIME: LD HOLD4 CLK_STATUS

RR HOLD4 ; Align alarm AM/PM with time AM/PM

XOR HOLD4 CLK_STATUS ; Compare

AND HOLD4 #AM_PM ; Ignore other bits

JR NZ ALARM_DONE ; Same?

CP HOURS ALARM_HOURS

JR NE ALARM_DONE

CP MINUTES ALARM_MINS

JR NE ALARM_DONE

SND_ALARM: OR TMR #%03 ; Sound the alarm

OR CLK_STATUS #(ALARMING + SNOOZE) ; Set ALARMING and SNOOZE bits

ALARM_DONE: RET

NOT_SNOOZING: DEC ALARM_TIME

JR NZ ALARM_DONE

AND TMR #%FC ; Shut off buzzer

AND CLK_STATUS #^C(ALARMING) ; Not alarming

RET

UPDATE_HOURS: AND P0D1_NEXT #%E1 ; Blank out the hours digits

AND P0D2_NEXT #%E0

TCM @DISP_HOURS #%FF ; See if hours should be blank

JR Z END_UPD_HOURS

LD HOLD4 CLK_STATUS

CP DISP_HOURS #GL_A_HOURS

JR NE NO_SHIFT

RR HOLD4

NO_SHIFT: TM HOLD4 #AM_PM ; See if it’s AM or PM

JR Z ITS_AM

OR P0D2_NEXT #PM_ON ; Turn on the PM enunciator

ITS_AM: LD HOLD4 @DISP_HOURS

TM HOLD4 #%F0 ; See if there’s a leading one

JR Z NO_ONE
AP97Z8X1800 17

Direct Drive of LCD Displays Zilog

OR P0D2_NEXT #ONE_ON ; Turn on the leading one

NO_ONE: CALL GET_DISP

RL HOLD4 ; Line up bit positions

OR P0D1_NEXT HOLD4

RL HOLD3

RL HOLD3

OR P0D2_NEXT HOLD3

END_UPD_HOURS: RET

UPDATE_MINS: AND P0D1_NEXT #%1F ; Blank out the minutes digits

AND P0D2_NEXT #%1F

AND P2D1_NEXT #%F0

AND P2D2_NEXT #%F8

TCM @DISP_MINS #%FF ; See if minutes should be blank

JR Z END_UPD_MINS

LD HOLD4 @DISP_MINS

CALL GET_DISP

RCF

RRC HOLD4 ; Move D bit into carry

JR NC D_NOT_SET

OR HOLD4 #%08 ; Put D bit into new position

D_NOT_SET: OR P2D1_NEXT HOLD4

OR P2D2_NEXT HOLD3

AND HOLD2 #%0E ; Drop off D segment bit

SWAP HOLD2 ; Align nibbles

OR P0D1_NEXT HOLD2

RL HOLD1 ; Align bits

SWAP HOLD1

OR P0D2_NEXT HOLD1

END_UPD_MINS: RET

UPDATE_DISP: EI ; Make sure LCD can interrupt

DI

TM GL_P3_COPY #%80 ; Wait for true data state

JR NZ UPDATE_DISP

LD %08 %10 ; New data for P0 D1

LD %09 %11 ; P0 D2

; LD %0A %12 ; P1 D1

; LD %0B %13 ; P1 D2

LD %0C %14 ; P2 D1

LD %0D %15 ; P2 D2

RET

GET_DISP: ; Takes a packed BCD byte in R15 and returns with

; the corresponding digit nibbles in RR12 and RR14

PUSH RP
18 AP97Z8X1800

Zilog Direct Drive of LCD Displays

SRP #WORK_group

LD R14 R15 ; Packed BCD, 2 digits to display

SWAP R15 ; Put 10s digit in R15

AND R14 #%0F ; and 1s digit in R14

AND R15 #%0F

LD R10 #^HB(TABLE)

LD R11 #^LB(TABLE)

ADD R11 R15 ; Add digit as table offset

ADC R10 #%00 ; (carry into upper byte)

LDC R12 @RR10 ; 10s digit code into R12

LD R13 R12

SWAP R12

AND R12 #%0F

AND R13 #%0F

LD R10 #^HB(TABLE)

LD R11 #^LB(TABLE)

ADD R11 R14

ADC R10 #%00

LDC R15 @RR10 ; 1s code into R15

LD R14 R15

SWAP R14

AND R14 #%0F

AND R15 #%0F

POP RP

RET

TABLE: ; bafcged ; Digit lookup table

.BYTE 01111011B ; 0

.BYTE 01001000B ; 1

.BYTE 01100111B ; 2

.BYTE 01101101B ; 3

.BYTE 01011100B ; 4

.BYTE 00111101B ; 5

.BYTE 00111111B ; 6

.BYTE 01101000B ; 7

.BYTE 01111111B ; 8

.BYTE 01111100B ; 9

.BYTE 01111110B ; A

.BYTE 00011111B ; b

.BYTE 00110011B ; C

.BYTE 01001111B ; d

.BYTE 00110111B ; E

.BYTE 00110110B ; F

.END
AP97Z8X1800 19

	Direct Drive of LCD Displays
	Introduction
	Theory of Operation
	LCD Basics
	Multiple Backplanes

	Hardware Implementation
	The Application
	The LCD Glass
	Driving The Backplanes
	The User Interface

	Software Implementation
	The LCD Driver
	LCD Data Manipulation
	The Real Time Clock
	Button Inputs

